Jump to content

Quasi-continuous function

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

In mathematics, the notion of a quasi-continuous function is similar to, but weaker than, the notion of a continuous function. All continuous functions are quasi-continuous but the converse is not true in general.

Definition

Let be a topological space. A real-valued function is quasi-continuous at a point if for any and any open neighborhood of there is a non-empty open set such that

Note that in the above definition, it is not necessary that .

Properties

  • If is continuous then is quasi-continuous
  • If is continuous and is quasi-continuous, then is quasi-continuous.

Example

Consider the function defined by whenever and whenever . Clearly f is continuous everywhere except at x=0, thus quasi-continuous everywhere except (at most) at x=0. At x=0, take any open neighborhood U of x. Then there exists an open set such that . Clearly this yields thus f is quasi-continuous.

In contrast, the function defined by whenever is a rational number and whenever is an irrational number is nowhere quasi-continuous, since every nonempty open set contains some with .

See also

References

  • Ján Borsík (2007–2008). "Points of Continuity, Quasi-continuity, cliquishness, and Upper and Lower Quasi-continuity". Real Analysis Exchange. 33 (2): 339–350.
  • T. Neubrunn (1988). "Quasi-continuity". Real Analysis Exchange. 14 (2): 259–308. doi:10.2307/44151947. JSTOR 44151947.