Jump to content

Predicate abstraction

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

In logic, predicate abstraction is the result of creating a predicate from a formula. If Q is any formula then the predicate abstract formed from that sentence is (λx.Q), where λ is an abstraction operator and in which every occurrence of x that is free in Q is bound by λ in (λx.Q). The resultant predicate (λx.Q(x)) is a monadic predicate capable of taking a term t as argument as in (λx.Q(x))(t), which says that the object denoted by 't' has the property of being such that Q.

The law of abstraction states ( λx.Q(x) )(t) ≡ Q(t/x) where Q(t/x) is the result of replacing all free occurrences of x in Q by t. This law is shown to fail in general in at least two cases: (i) when t is irreferential and (ii) when Q contains modal operators.

In modal logic the "de re / de dicto distinction" is stated as

1. (DE DICTO):

2. (DE RE): .

In (1) the modal operator applies to the formula A(t) and the term t is within the scope of the modal operator. In (2) t is not within the scope of the modal operator.

References

For the semantics and further philosophical developments of predicate abstraction see Fitting and Mendelsohn, First-order Modal Logic, Springer, 1999.