Jump to content

Polynomial mapping

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

In algebra, a polynomial map or polynomial mapping between vector spaces over an infinite field k is a polynomial in linear functionals with coefficients in k; i.e., it can be written as

where the are linear functionals and the are vectors in W. For example, if , then a polynomial mapping can be expressed as where the are (scalar-valued) polynomial functions on V. (The abstract definition has an advantage that the map is manifestly free of a choice of basis.)

When V, W are finite-dimensional vector spaces and are viewed as algebraic varieties, then a polynomial mapping is precisely a morphism of algebraic varieties.

One fundamental outstanding question regarding polynomial mappings is the Jacobian conjecture, which concerns the sufficiency of a polynomial mapping to be invertible.

See also

References

  • Claudio Procesi (2007) Lie Groups: an approach through invariants and representation, Springer, ISBN 9780387260402.