Jump to content

Orthogonal diagonalization

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

In linear algebra, an orthogonal diagonalization of a normal matrix (e.g. a symmetric matrix) is a diagonalization by means of an orthogonal change of coordinates.[1]

The following is an orthogonal diagonalization algorithm that diagonalizes a quadratic form q(x) on n by means of an orthogonal change of coordinates X = PY.[2]

  • Step 1: find the symmetric matrix A which represents q and find its characteristic polynomial
  • Step 2: find the eigenvalues of A which are the roots of .
  • Step 3: for each eigenvalue of A from step 2, find an orthogonal basis of its eigenspace.
  • Step 4: normalize all eigenvectors in step 3 which then form an orthonormal basis of n.
  • Step 5: let P be the matrix whose columns are the normalized eigenvectors in step 4.

Then X = PY is the required orthogonal change of coordinates, and the diagonal entries of will be the eigenvalues which correspond to the columns of P.

References

  1. ^ Poole, D. (2010). Linear Algebra: A Modern Introduction (in Dutch). Cengage Learning. p. 411. ISBN 978-0-538-73545-2. Retrieved 12 November 2018.
  2. ^ Seymour Lipschutz 3000 Solved Problems in Linear Algebra.