Jump to content

Operad algebra

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

In algebra, an operad algebra is an "algebra" over an operad. It is a generalization of an associative algebra over a commutative ring R, with an operad replacing R.

Definitions

Given an operad O (say, a symmetric sequence in a symmetric monoidal ∞-category C), an algebra over an operad, or O-algebra for short, is, roughly, a left module over O with multiplications parametrized by O.

If O is a topological operad, then one can say an algebra over an operad is an O-monoid object in C. If C is symmetric monoidal, this recovers the usual definition.

Let C be symmetric monoidal ∞-category with monoidal structure distributive over colimits. If is a map of operads and, moreover, if f is a homotopy equivalence, then the ∞-category of algebras over O in C is equivalent to the ∞-category of algebras over O' in C.[1]

See also

Notes

  1. ^ Francis, Proposition 2.9.

References

  • Francis, John. "Derived Algebraic Geometry Over -Rings" (PDF).
  • Hinich, Vladimir (1997-02-11). "Homological algebra of homotopy algebras". arXiv:q-alg/9702015.