Jump to content

Nonlinear electrodynamics

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


In high-energy physics, nonlinear electrodynamics (NED or NLED) refers to a family of generalizations of Maxwell electrodynamics which describe electromagnetic fields that exhibit nonlinear dynamics.[1] For a theory to describe the electromagnetic field (a U(1) gauge field), its action must be gauge invariant; in the case of , for the theory to not have Faddeev-Popov ghosts, this constraint dictates that the Lagrangian of a nonlinear electrodynamics must be a function of only (the Maxwell Lagrangian) and (where is the Levi-Civita tensor).[1][2][3] Notable NED models include the Born-Infeld model,[4] the Euler-Heisenberg Lagrangian,[5] and the CP-violating Chern-Simons theory .[2][6][7]

Some recent formulations also consider nonlocal extensions involving fractional U(1) holonomies on twistor space, though these remain speculative.

References

  1. ^ a b Sorokin, Dmitri P. (2022). "Introductory Notes on Non-linear Electrodynamics and its Applications". Fortschritte der Physik. 70 (7–8). arXiv:2112.12118. doi:10.1002/prop.202200092.
  2. ^ a b Bi, Shihao; Tao, Jun (2021). "Holographic DC conductivity for backreacted NLED in massive gravity". Journal of High Energy Physics (6): 174. arXiv:2101.00912. Bibcode:2021JHEP...06..174B. doi:10.1007/JHEP06(2021)174.
  3. ^ Bruce, Stanley A. (2024). "Nonlinear electrodynamics and its possible connection to relativistic superconductivity: An example". Zeitschrift für Naturforschung A. 79 (11): 1041–1046. Bibcode:2024ZNatA..79.1041B. doi:10.1515/zna-2024-0136.
  4. ^ Born, M.; Infeld, L. (1934). "Foundations of the New Field Theory". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 144 (852): 425–451. Bibcode:1934RSPSA.144..425B. doi:10.1098/rspa.1934.0059.
  5. ^ Heisenberg, W.; Euler, H. (1936). "Folgerungen aus der Diracschen Theorie des Positrons". Zeitschrift für Physik (in German). 98 (11–12): 714–732. Bibcode:1936ZPhy...98..714H. doi:10.1007/bf01343663. ISSN 1434-6001.
  6. ^ Fu, Qi-Ming; Zhao, Li; Liu, Yu-Xiao (2021). "Weak deflection angle by electrically and magnetically charged black holes from nonlinear electrodynamics". Physical Review D. 104 (2): 024033. arXiv:2101.08409. Bibcode:2021PhRvD.104b4033F. doi:10.1103/PhysRevD.104.024033.
  7. ^ Delphenich, David (2003). "Nonlinear Electrodynamics and QED". arXiv:hep-th/0309108.