From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
In mathematics, the Neville theta functions , named after Eric Harold Neville ,[ 1] are defined as follows:[ 2] [ 3]
[ 4]
θ
c
(
z
,
m
)
=
2
π
q
(
m
)
1
/
4
m
1
/
4
K
(
m
)
∑
k
=
0
∞
(
q
(
m
)
)
k
(
k
+
1
)
cos
(
(
2
k
+
1
)
π
z
2
K
(
m
)
)
{\displaystyle \theta _{c}(z,m)={\frac {{\sqrt {2\pi }}\,q(m)^{1/4}}{m^{1/4}{\sqrt {K(m)}}}}\,\,\sum _{k=0}^{\infty }(q(m))^{k(k+1)}\cos \left({\frac {(2k+1)\pi z}{2K(m)}}\right)}
θ
d
(
z
,
m
)
=
2
π
2
K
(
m
)
(
1
+
2
∑
k
=
1
∞
(
q
(
m
)
)
k
2
cos
(
π
z
k
K
(
m
)
)
)
{\displaystyle \theta _{d}(z,m)={\frac {\sqrt {2\pi }}{2{\sqrt {K(m)}}}}\,\,\left(1+2\,\sum _{k=1}^{\infty }(q(m))^{k^{2}}\cos \left({\frac {\pi zk}{K(m)}}\right)\right)}
θ
n
(
z
,
m
)
=
2
π
2
(
1
−
m
)
1
/
4
K
(
m
)
(
1
+
2
∑
k
=
1
∞
(
−
1
)
k
(
q
(
m
)
)
k
2
cos
(
π
z
k
K
(
m
)
)
)
{\displaystyle \theta _{n}(z,m)={\frac {\sqrt {2\pi }}{2(1-m)^{1/4}{\sqrt {K(m)}}}}\,\,\left(1+2\sum _{k=1}^{\infty }(-1)^{k}(q(m))^{k^{2}}\cos \left({\frac {\pi zk}{K(m)}}\right)\right)}
θ
s
(
z
,
m
)
=
2
π
q
(
m
)
1
/
4
m
1
/
4
(
1
−
m
)
1
/
4
K
(
m
)
∑
k
=
0
∞
(
−
1
)
k
(
q
(
m
)
)
k
(
k
+
1
)
sin
(
(
2
k
+
1
)
π
z
2
K
(
m
)
)
{\displaystyle \theta _{s}(z,m)={\frac {{\sqrt {2\pi }}\,q(m)^{1/4}}{m^{1/4}(1-m)^{1/4}{\sqrt {K(m)}}}}\,\,\sum _{k=0}^{\infty }(-1)^{k}(q(m))^{k(k+1)}\sin \left({\frac {(2k+1)\pi z}{2K(m)}}\right)}
where: K(m) is the complete elliptic integral of the first kind,
K
′
(
m
)
=
K
(
1
−
m
)
{\displaystyle K'(m)=K(1-m)}
, and
q
(
m
)
=
e
−
π
K
′
(
m
)
/
K
(
m
)
{\displaystyle q(m)=e^{-\pi K'(m)/K(m)}}
is the elliptic nome.
Note that the functions θp (z,m) are sometimes defined in terms of the nome q(m) and written θp (z,q) (e.g. NIST[ 5] ). The functions may also be written in terms of the τ parameter θp (z|τ) where
q
=
e
i
π
τ
{\displaystyle q=e^{i\pi \tau }}
.
Relationship to other functions
The Neville theta functions may be expressed in terms of the Jacobi theta functions[ 5]
θ
s
(
z
|
τ
)
=
θ
3
2
(
0
|
τ
)
θ
1
(
z
′
|
τ
)
/
θ
1
′
(
0
|
τ
)
{\displaystyle \theta _{s}(z|\tau )=\theta _{3}^{2}(0|\tau )\theta _{1}(z'|\tau )/\theta '_{1}(0|\tau )}
θ
c
(
z
|
τ
)
=
θ
2
(
z
′
|
τ
)
/
θ
2
(
0
|
τ
)
{\displaystyle \theta _{c}(z|\tau )=\theta _{2}(z'|\tau )/\theta _{2}(0|\tau )}
θ
n
(
z
|
τ
)
=
θ
4
(
z
′
|
τ
)
/
θ
4
(
0
|
τ
)
{\displaystyle \theta _{n}(z|\tau )=\theta _{4}(z'|\tau )/\theta _{4}(0|\tau )}
θ
d
(
z
|
τ
)
=
θ
3
(
z
′
|
τ
)
/
θ
3
(
0
|
τ
)
{\displaystyle \theta _{d}(z|\tau )=\theta _{3}(z'|\tau )/\theta _{3}(0|\tau )}
where
z
′
=
z
/
θ
3
2
(
0
|
τ
)
{\displaystyle z'=z/\theta _{3}^{2}(0|\tau )}
.
The Neville theta functions are related to the Jacobi elliptic functions . If pq(u,m) is a Jacobi elliptic function (p and q are one of s,c,n,d), then
pq
(
u
,
m
)
=
θ
p
(
u
,
m
)
θ
q
(
u
,
m
)
.
{\displaystyle \operatorname {pq} (u,m)={\frac {\theta _{p}(u,m)}{\theta _{q}(u,m)}}.}
Examples
θ
c
(
2.5
,
0.3
)
≈
−
0.65900466676738154967
{\displaystyle \theta _{c}(2.5,0.3)\approx -0.65900466676738154967}
θ
d
(
2.5
,
0.3
)
≈
0.95182196661267561994
{\displaystyle \theta _{d}(2.5,0.3)\approx 0.95182196661267561994}
θ
n
(
2.5
,
0.3
)
≈
1.0526693354651613637
{\displaystyle \theta _{n}(2.5,0.3)\approx 1.0526693354651613637}
θ
s
(
2.5
,
0.3
)
≈
0.82086879524530400536
{\displaystyle \theta _{s}(2.5,0.3)\approx 0.82086879524530400536}
Symmetry
θ
c
(
z
,
m
)
=
θ
c
(
−
z
,
m
)
{\displaystyle \theta _{c}(z,m)=\theta _{c}(-z,m)}
θ
d
(
z
,
m
)
=
θ
d
(
−
z
,
m
)
{\displaystyle \theta _{d}(z,m)=\theta _{d}(-z,m)}
θ
n
(
z
,
m
)
=
θ
n
(
−
z
,
m
)
{\displaystyle \theta _{n}(z,m)=\theta _{n}(-z,m)}
θ
s
(
z
,
m
)
=
−
θ
s
(
−
z
,
m
)
{\displaystyle \theta _{s}(z,m)=-\theta _{s}(-z,m)}
Complex 3D plots
Notes
References