From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
In mathematics, the Neumann polynomials , introduced by Carl Neumann for the special case
α
=
0
{\displaystyle \alpha =0}
, are a sequence of polynomials in
1
/
t
{\displaystyle 1/t}
used to expand functions in term of Bessel functions .[ 1]
The first few polynomials are
O
0
(
α
)
(
t
)
=
1
t
,
{\displaystyle O_{0}^{(\alpha )}(t)={\frac {1}{t}},}
O
1
(
α
)
(
t
)
=
2
α
+
1
t
2
,
{\displaystyle O_{1}^{(\alpha )}(t)=2{\frac {\alpha +1}{t^{2}}},}
O
2
(
α
)
(
t
)
=
2
+
α
t
+
4
(
2
+
α
)
(
1
+
α
)
t
3
,
{\displaystyle O_{2}^{(\alpha )}(t)={\frac {2+\alpha }{t}}+4{\frac {(2+\alpha )(1+\alpha )}{t^{3}}},}
O
3
(
α
)
(
t
)
=
2
(
1
+
α
)
(
3
+
α
)
t
2
+
8
(
1
+
α
)
(
2
+
α
)
(
3
+
α
)
t
4
,
{\displaystyle O_{3}^{(\alpha )}(t)=2{\frac {(1+\alpha )(3+\alpha )}{t^{2}}}+8{\frac {(1+\alpha )(2+\alpha )(3+\alpha )}{t^{4}}},}
O
4
(
α
)
(
t
)
=
(
1
+
α
)
(
4
+
α
)
2
t
+
4
(
1
+
α
)
(
2
+
α
)
(
4
+
α
)
t
3
+
16
(
1
+
α
)
(
2
+
α
)
(
3
+
α
)
(
4
+
α
)
t
5
.
{\displaystyle O_{4}^{(\alpha )}(t)={\frac {(1+\alpha )(4+\alpha )}{2t}}+4{\frac {(1+\alpha )(2+\alpha )(4+\alpha )}{t^{3}}}+16{\frac {(1+\alpha )(2+\alpha )(3+\alpha )(4+\alpha )}{t^{5}}}.}
A general form for the polynomial is
O
n
(
α
)
(
t
)
=
α
+
n
2
α
∑
k
=
0
⌊
n
/
2
⌋
(
−
1
)
n
−
k
(
n
−
k
)
!
k
!
(
−
α
n
−
k
)
(
2
t
)
n
+
1
−
2
k
,
{\displaystyle O_{n}^{(\alpha )}(t)={\frac {\alpha +n}{2\alpha }}\sum _{k=0}^{\lfloor n/2\rfloor }(-1)^{n-k}{\frac {(n-k)!}{k!}}{-\alpha \choose n-k}\left({\frac {2}{t}}\right)^{n+1-2k},}
and they have the "generating function"
(
z
2
)
α
Γ
(
α
+
1
)
1
t
−
z
=
∑
n
=
0
O
n
(
α
)
(
t
)
J
α
+
n
(
z
)
,
{\displaystyle {\frac {\left({\frac {z}{2}}\right)^{\alpha }}{\Gamma (\alpha +1)}}{\frac {1}{t-z}}=\sum _{n=0}O_{n}^{(\alpha )}(t)J_{\alpha +n}(z),}
where J are Bessel functions .
To expand a function f in the form
f
(
z
)
=
(
2
z
)
α
∑
n
=
0
a
n
J
α
+
n
(
z
)
{\displaystyle f(z)=\left({\frac {2}{z}}\right)^{\alpha }\sum _{n=0}a_{n}J_{\alpha +n}(z)\,}
for
|
t
|
<
c
{\displaystyle |t|<c}
, compute
a
n
=
Γ
(
α
+
1
)
2
π
i
∮
|
t
|
=
c
′
f
(
t
)
O
n
(
α
)
(
t
)
d
t
,
{\displaystyle a_{n}={\frac {\Gamma (\alpha +1)}{2\pi i}}\oint _{|t|=c'}f(t)O_{n}^{(\alpha )}(t)\,dt,}
where
c
′
<
c
{\displaystyle c'<c}
and c is the distance of the nearest singularity of f(z) from
z
=
0
{\displaystyle z=0}
.
Examples
An example is the extension
(
1
2
z
)
s
=
Γ
(
s
)
⋅
∑
k
=
0
(
−
1
)
k
J
s
+
2
k
(
z
)
(
s
+
2
k
)
(
−
s
k
)
,
{\displaystyle \left({\tfrac {1}{2}}z\right)^{s}=\Gamma (s)\cdot \sum _{k=0}(-1)^{k}J_{s+2k}(z)(s+2k){-s \choose k},}
or the more general Sonine formula[ 2]
e
i
γ
z
=
Γ
(
s
)
⋅
∑
k
=
0
i
k
C
k
(
s
)
(
γ
)
(
s
+
k
)
J
s
+
k
(
z
)
(
z
2
)
s
.
{\displaystyle e^{i\gamma z}=\Gamma (s)\cdot \sum _{k=0}i^{k}C_{k}^{(s)}(\gamma )(s+k){\frac {J_{s+k}(z)}{\left({\frac {z}{2}}\right)^{s}}}.}
where
C
k
(
s
)
{\displaystyle C_{k}^{(s)}}
is Gegenbauer's polynomial . Then,[citation needed ] [original research? ]
(
z
2
)
2
k
(
2
k
−
1
)
!
J
s
(
z
)
=
∑
i
=
k
(
−
1
)
i
−
k
(
i
+
k
−
1
2
k
−
1
)
(
i
+
k
+
s
−
1
2
k
−
1
)
(
s
+
2
i
)
J
s
+
2
i
(
z
)
,
{\displaystyle {\frac {\left({\frac {z}{2}}\right)^{2k}}{(2k-1)!}}J_{s}(z)=\sum _{i=k}(-1)^{i-k}{i+k-1 \choose 2k-1}{i+k+s-1 \choose 2k-1}(s+2i)J_{s+2i}(z),}
∑
n
=
0
t
n
J
s
+
n
(
z
)
=
e
t
z
2
t
s
∑
j
=
0
(
−
z
2
t
)
j
j
!
γ
(
j
+
s
,
t
z
2
)
Γ
(
j
+
s
)
=
∫
0
∞
e
−
z
x
2
2
t
z
x
t
J
s
(
z
1
−
x
2
)
1
−
x
2
s
d
x
,
{\displaystyle \sum _{n=0}t^{n}J_{s+n}(z)={\frac {e^{\frac {tz}{2}}}{t^{s}}}\sum _{j=0}{\frac {\left(-{\frac {z}{2t}}\right)^{j}}{j!}}{\frac {\gamma \left(j+s,{\frac {tz}{2}}\right)}{\,\Gamma (j+s)}}=\int _{0}^{\infty }e^{-{\frac {zx^{2}}{2t}}}{\frac {zx}{t}}{\frac {J_{s}(z{\sqrt {1-x^{2}}})}{{\sqrt {1-x^{2}}}^{s}}}\,dx,}
the confluent hypergeometric function
M
(
a
,
s
,
z
)
=
Γ
(
s
)
∑
k
=
0
∞
(
−
1
t
)
k
L
k
(
−
a
−
k
)
(
t
)
J
s
+
k
−
1
(
2
t
z
)
(
t
z
)
s
−
k
−
1
,
{\displaystyle M(a,s,z)=\Gamma (s)\sum _{k=0}^{\infty }\left(-{\frac {1}{t}}\right)^{k}L_{k}^{(-a-k)}(t){\frac {J_{s+k-1}\left(2{\sqrt {tz}}\right)}{({\sqrt {tz}})^{s-k-1}}},}
and in particular
J
s
(
2
z
)
z
s
=
4
s
Γ
(
s
+
1
2
)
π
e
2
i
z
∑
k
=
0
L
k
(
−
s
−
1
/
2
−
k
)
(
i
t
4
)
(
4
i
z
)
k
J
2
s
+
k
(
2
t
z
)
t
z
2
s
+
k
,
{\displaystyle {\frac {J_{s}(2z)}{z^{s}}}={\frac {4^{s}\Gamma \left(s+{\frac {1}{2}}\right)}{\sqrt {\pi }}}e^{2iz}\sum _{k=0}L_{k}^{(-s-1/2-k)}\left({\frac {it}{4}}\right)(4iz)^{k}{\frac {J_{2s+k}\left(2{\sqrt {tz}}\right)}{{\sqrt {tz}}^{2s+k}}},}
the index shift formula
Γ
(
ν
−
μ
)
J
ν
(
z
)
=
Γ
(
μ
+
1
)
∑
n
=
0
Γ
(
ν
−
μ
+
n
)
n
!
Γ
(
ν
+
n
+
1
)
(
z
2
)
ν
−
μ
+
n
J
μ
+
n
(
z
)
,
{\displaystyle \Gamma (\nu -\mu )J_{\nu }(z)=\Gamma (\mu +1)\sum _{n=0}{\frac {\Gamma (\nu -\mu +n)}{n!\Gamma (\nu +n+1)}}\left({\frac {z}{2}}\right)^{\nu -\mu +n}J_{\mu +n}(z),}
the Taylor expansion (addition formula)
J
s
(
z
2
−
2
u
z
)
(
z
2
−
2
u
z
)
±
s
=
∑
k
=
0
(
±
u
)
k
k
!
J
s
±
k
(
z
)
z
±
s
,
{\displaystyle {\frac {J_{s}\left({\sqrt {z^{2}-2uz}}\right)}{\left({\sqrt {z^{2}-2uz}}\right)^{\pm s}}}=\sum _{k=0}{\frac {(\pm u)^{k}}{k!}}{\frac {J_{s\pm k}(z)}{z^{\pm s}}},}
(cf.[ 3] [failed verification ] ) and the expansion of the integral of the Bessel function,
∫
J
s
(
z
)
d
z
=
2
∑
k
=
0
J
s
+
2
k
+
1
(
z
)
,
{\displaystyle \int J_{s}(z)dz=2\sum _{k=0}J_{s+2k+1}(z),}
are of the same type.
See also
Notes
^ Abramowitz and Stegun , p. 363, 9.1.82 ff.
^ Erdélyi, Arthur; Magnus, Wilhelm; Oberhettinger, Fritz; Tricomi, Francesco G. (1955), Higher Transcendental Functions. Vols. I, II, III , McGraw-Hill, MR 0058756 II.7.10.1, p.64
^ Gradshteyn, Izrail Solomonovich ; Ryzhik, Iosif Moiseevich ; Geronimus, Yuri Veniaminovich ; Tseytlin, Michail Yulyevich ; Jeffrey, Alan (2015) [October 2014]. "8.515.1.". In Zwillinger, Daniel; Moll, Victor Hugo (eds.). Table of Integrals, Series, and Products . Translated by Scripta Technica, Inc. (8 ed.). Academic Press, Inc. p. 944. ISBN 0-12-384933-0 . LCCN 2014010276 .