Jump to content

Multipartition

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

In number theory and combinatorics, a multipartition of a positive integer n is a way of writing n as a sum, each element of which is in turn an integer partition. The concept is also found in the theory of Lie algebras.

r-component multipartitions

An r-component multipartition of an integer n is an r-tuple of partitions λ(1), ..., λ(r) where each λ(i) is a partition of some ai and the ai sum to n. The number of r-component multipartitions of n is denoted Pr(n). Congruences for the function Pr(n) have been studied by A. O. L. Atkin.

References

  • George E. Andrews (2008). "A survey of multipartitions". In Alladi, Krishnaswami (ed.). Surveys in Number Theory. Developments in Mathematics. Vol. 17. Springer-Verlag. pp. 1–19. ISBN 978-0-387-78509-7. Zbl 1183.11063.
  • Fayers, Matthew (2006). "Weights of multipartitions and representations of Ariki–Koike algebras". Advances in Mathematics. 206 (1): 112–144. CiteSeerX 10.1.1.538.4302. doi:10.1016/j.aim.2005.07.017. Zbl 1111.20009.