Jump to content

Multi-adjoint logic programming

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Multi-adjoint logic programming[1] defines syntax and semantics of a logic programming program in such a way that the underlying maths justifying the results are a residuated lattice and/or MV-algebra.

The definition of a multi-adjoint logic program is given, as usual in fuzzy logic programming, as a set of weighted rules and facts of a given formal language F. Notice that the use of different implications is allowed in these rules.

Definition: A multi-adjoint logic program is a set P of rules of the form <(Ai B), δ> such that:

1. The rule (A ←i B) is a formula of F;

2. The confidence factor δ is an element (a truth-value) of L;

3. The head A is an atom;

4. The body B is a formula built from atoms B1, …, Bn (n ≥ 0) by the use of conjunctors, disjunctors, and aggregators.

5. Facts are rules with body ┬.

6. A query (or goal) is an atom intended as a question ?A prompting the system.

Implementations

Examples of implementations of Multi-adjoint logic programming:

References

  1. ^ Medina, Jesús; Ojeda-Aciego, Manuel; Vojtaš, Peter (2001). "Multi-adjoint Logic Programming with Continous Semantics". Logic Programming and Nonmotonic Reasoning. Lecture Notes in Computer Science. Vol. 2173. pp. 351–364. doi:10.1007/3-540-45402-0_26. ISBN 978-3-540-42593-9.
  2. ^ "Rfuzzy". Archived from the original on 2012-02-28. Retrieved 2012-01-21.
  3. ^ "Floper".