Jump to content

Modular invariant theory

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

In mathematics, a modular invariant of a group is an invariant of a finite group acting on a vector space of positive characteristic (usually dividing the order of the group). The study of modular invariants was originated in about 1914 by Dickson (2004).

Dickson invariant

When G is the finite general linear group GLn(Fq) over the finite field Fq of order a prime power q acting on the ring Fq[X1, ...,Xn] in the natural way, Dickson (1911) found a complete set of invariants as follows. Write [e1, ..., en] for the determinant of the matrix whose entries are Xqej
i
, where e1, ..., en are non-negative integers. For example, the Moore determinant [0,1,2] of order 3 is

Then under the action of an element g of GLn(Fq) these determinants are all multiplied by det(g), so they are all invariants of SLn(Fq) and the ratios [e1, ...,en] / [0, 1, ..., n − 1] are invariants of GLn(Fq), called Dickson invariants. Dickson proved that the full ring of invariants Fq[X1, ...,Xn]GLn(Fq) is a polynomial algebra over the n Dickson invariants [0, 1, ..., i − 1, i + 1, ..., n] / [0, 1, ..., n − 1] for i = 0, 1, ..., n − 1. Steinberg (1987) gave a shorter proof of Dickson's theorem.

The matrices [e1, ..., en] are divisible by all non-zero linear forms in the variables Xi with coefficients in the finite field Fq. In particular the Moore determinant [0, 1, ..., n − 1] is a product of such linear forms, taken over 1 + q + q2 + ... + qn – 1 representatives of (n – 1)-dimensional projective space over the field. This factorization is similar to the factorization of the Vandermonde determinant into linear factors.

See also

References

  • Dickson, Leonard Eugene (1911), "A Fundamental System of Invariants of the General Modular Linear Group with a Solution of the Form Problem", Transactions of the American Mathematical Society, 12 (1): 75–98, doi:10.2307/1988736, ISSN 0002-9947, JSTOR 1988736
  • Dickson, Leonard Eugene (2004) [1914], On invariants and the theory of numbers, Dover Phoenix editions, New York: Dover Publications, ISBN 978-0-486-43828-3, MR 0201389
  • Rutherford, Daniel Edwin (2007) [1932], Modular invariants, Cambridge Tracts in Mathematics and Mathematical Physics, No. 27, Ramsay Press, ISBN 978-1-4067-3850-6, MR 0186665
  • Sanderson, Mildred (1913), "Formal Modular Invariants with Application to Binary Modular Covariants", Transactions of the American Mathematical Society, 14 (4): 489–500, doi:10.2307/1988702, ISSN 0002-9947, JSTOR 1988702
  • Steinberg, Robert (1987), "On Dickson's theorem on invariants" (PDF), Journal of the Faculty of Science. University of Tokyo. Section IA. Mathematics, 34 (3): 699–707, ISSN 0040-8980, MR 0927606, archived from the original (PDF) on 2012-03-05, retrieved 2010-12-02