Jump to content

Measurable Riemann mapping theorem

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

In mathematics, the measurable Riemann mapping theorem is a theorem proved in 1960 by Lars Ahlfors and Lipman Bers in complex analysis and geometric function theory. Contrary to its name, it is not a direct generalization of the Riemann mapping theorem, but instead a result concerning quasiconformal mappings and solutions of the Beltrami equation. The result was prefigured by earlier results of Charles Morrey from 1938 on quasi-linear elliptic partial differential equations.

The theorem of Ahlfors and Bers states that if μ is a bounded measurable function on C with , then there is a unique solution f of the Beltrami equation

for which f is a quasiconformal homeomorphism of C fixing the points 0, 1 and ∞. A similar result is true with C replaced by the unit disk D. Their proof used the Beurling transform, a singular integral operator.

References

  • Ahlfors, Lars; Bers, Lipman (1960), "Riemann's mapping theorem for variable metrics", Annals of Mathematics, 72 (2): 385–404, doi:10.2307/1970141, JSTOR 1970141
  • Ahlfors, Lars V. (1966), Lectures on quasiconformal mappings, Van Nostrand
  • Astala, Kari; Iwaniec, Tadeusz; Martin, Gaven (2009), Elliptic partial differential equations and quasiconformal mappings in the plane, Princeton mathematical series, vol. 48, Princeton University Press, pp. 161–172, ISBN 978-0-691-13777-3
  • Carleson, L.; Gamelin, T. D. W. (1993), Complex dynamics, Universitext: Tracts in Mathematics, Springer-Verlag, ISBN 0-387-97942-5
  • Morrey, Charles B. Jr. (1938), "On the solutions of quasi-linear elliptic partial differential equations", Transactions of the American Mathematical Society, 43 (1): 126–166, doi:10.2307/1989904, JFM 62.0565.02, JSTOR 1989904, MR 1501936, Zbl 0018.40501
  • Zakeri, Saeed; Zeinalian, Mahmood (1996), "When ellipses look like circles: the measurable Riemann mapping theorem" (PDF), Nashr-e-Riazi, 8: 5–14