Jump to content

Maximum common edge subgraph

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Given two graphs and , the maximum common edge subgraph problem is the problem of finding a graph with as many edges as possible which is isomorphic to both a subgraph of and a subgraph of .

The maximum common edge subgraph problem on general graphs is NP-complete as it is a generalization of subgraph isomorphism: a graph is isomorphic to a subgraph of another graph if and only if the maximum common edge subgraph of and has the same number of edges as . The problem is APX-hard, unless the two input graphs and are required to have the same number of vertices.[1]

See also

References

  1. ^ Bahiense, L.; Manic, G.; Piva, B.; de Souza, C. C. (2012), "The maximum common edge subgraph problem: A polyhedral investigation", Discrete Applied Mathematics, 160 (18): 2523–2541, doi:10.1016/j.dam.2012.01.026.