Jump to content

Maximal ergodic theorem

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

The maximal ergodic theorem is a theorem in ergodic theory, a discipline within mathematics.

Suppose that is a probability space, that is a (possibly noninvertible) measure-preserving transformation, and that . Define by

Then the maximal ergodic theorem states that

for any λ ∈ R.

This theorem is used to prove the point-wise ergodic theorem.

References

  • Keane, Michael; Petersen, Karl (2006), "Easy and nearly simultaneous proofs of the Ergodic Theorem and Maximal Ergodic Theorem", Dynamics & Stochastics, Institute of Mathematical Statistics Lecture Notes - Monograph Series, vol. 48, pp. 248–251, arXiv:math/0004070, doi:10.1214/074921706000000266, ISBN 0-940600-64-1.