Jump to content

Matrix gamma distribution

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
Matrix gamma
Notation
Parameters

shape parameter (real)
scale parameter

scale (positive-definite real matrix)
Support positive-definite real matrix
PDF

In statistics, a matrix gamma distribution is a generalization of the gamma distribution to positive-definite matrices.[1] It is effectively a different parametrization of the Wishart distribution, and is used similarly, e.g. as the conjugate prior of the precision matrix of a multivariate normal distribution and matrix normal distribution. The compound distribution resulting from compounding a matrix normal with a matrix gamma prior over the precision matrix is a generalized matrix t-distribution.[1]

A matrix gamma distributions is identical to a Wishart distribution with

Notice that the parameters and are not identified; the density depends on these two parameters through the product .

See also

Notes

  1. ^ a b Iranmanesh, Anis, M. Arashib and S. M. M. Tabatabaey (2010). "On Conditional Applications of Matrix Variate Normal Distribution". Iranian Journal of Mathematical Sciences and Informatics, 5:2, pp. 33–43.

References

  • Gupta, A. K.; Nagar, D. K. (1999) Matrix Variate Distributions, Chapman and Hall/CRC ISBN 978-1584880462