Jump to content

Markov additive process

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

In applied probability, a Markov additive process (MAP) is a bivariate Markov process where the future states depends only on one of the variables.[1]

Definition

Finite or countable state space for J(t)

The process is a Markov additive process with continuous time parameter t if[1]

  1. is a Markov process
  2. the conditional distribution of given depends only on .

The state space of the process is R × S where X(t) takes real values and J(t) takes values in some countable set S.

General state space for J(t)

For the case where J(t) takes a more general state space the evolution of X(t) is governed by J(t) in the sense that for any f and g we require[2]

.

Example

A fluid queue is a Markov additive process where J(t) is a continuous-time Markov chain[clarification needed][example needed].

Applications

Çinlar uses the unique structure of the MAP to prove that, given a gamma process with a shape parameter that is a function of Brownian motion, the resulting lifetime is distributed according to the Weibull distribution.

Kharoufeh presents a compact transform expression for the failure distribution for wear processes of a component degrading according to a Markovian environment inducing state-dependent continuous linear wear by using the properties of a MAP and assuming the wear process to be temporally homogeneous and that the environmental process has a finite state space.

Notes

  1. ^ a b Magiera, R. (1998). "Optimal Sequential Estimation for Markov-Additive Processes". Advances in Stochastic Models for Reliability, Quality and Safety. pp. 167–181. doi:10.1007/978-1-4612-2234-7_12. ISBN 978-1-4612-7466-7.
  2. ^ Asmussen, S. R. (2003). "Markov Additive Models". Applied Probability and Queues. Stochastic Modelling and Applied Probability. Vol. 51. pp. 302–339. doi:10.1007/0-387-21525-5_11. ISBN 978-0-387-00211-8.