Jump to content

Logarithmically concave sequence

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
The rows of Pascal's triangle are examples for logarithmically concave sequences.

In mathematics, a sequence a = (a0, a1, ..., an) of nonnegative real numbers is called a logarithmically concave sequence, or a log-concave sequence for short, if ai2ai−1ai+1 holds for 0 < i < n .

Remark: some authors (explicitly or not) add two further conditions in the definition of log-concave sequences:

  • a is non-negative
  • a has no internal zeros; in other words, the support of a is an interval of Z.

These conditions mirror the ones required for log-concave functions.

Sequences that fulfill the three conditions are also called Pólya Frequency sequences of order 2 (PF2 sequences). Refer to chapter 2 of [1] for a discussion on the two notions. For instance, the sequence (1,1,0,0,1) satisfies the concavity inequalities but not the internal zeros condition.

Examples of log-concave sequences are given by the binomial coefficients along any row of Pascal's triangle and the elementary symmetric means of a finite sequence of real numbers.

References

  1. ^ Brenti, Francesco (1989). Unimodal, log-concave and Pólya frequency sequences in combinatorics. Providence, R.I.: American Mathematical Society. ISBN 978-1-4704-0836-7. OCLC 851087212.

See also