Partial differential equations describing diffusion
The Kolmogorov backward equation (KBE) and its adjoint, the Kolmogorov forward equation, are partial differential equations (PDE) that arise in the theory of continuous-time continuous-state Markov processes. Both were published by Andrey Kolmogorov in 1931.[1] Later it was realized that the forward equation was already known to physicists under the name Fokker–Planck equation; the KBE on the other hand was new.
Overview
The Kolmogorov forward equation is used to evolve the state of a system forward in time. Given an initial probability distribution
for a system being in state
at time
the forward PDE is integrated to obtain
at later times
A common case takes the initial value
to be a Dirac delta function centered on the known initial state
The Kolmogorov backward equation is used to estimate the probability of the current system evolving so that it's future state at time
is given by some fixed probability function
That is, the probability distribution in the future is given as a boundary condition, and the backwards PDE is integrated backwards in time.
A common boundary condition is to ask that the future state is contained in some subset of states
the target set. Writing the set membership function as
so that
if
and zero otherwise, the backward equation expresses the hit probability
that in the future, the set membership will be sharp, given by
Here,
is just the size of the set
a normalization so that the total probability at time
integrates to one.
Kolmogorov backward equation
Let
be the solution of the stochastic differential equation

where
is a (possibly multi-dimensional) Wiener process (Brownian motion),
is the drift coefficient, and
is related to the diffusion coefficient
as
Define the transition density (or fundamental solution)
by
![{\displaystyle p(t,x;\,T,y)\;=\;{\frac {\mathbb {P} [\,X_{T}\in dy\,\mid \,X_{t}=x\,]}{dy}},\quad t<T.}](/media/api/rest_v1/media/math/render/svg/0706b6a9c585b5585a66ff424610164e9ba17d25)
Then the usual Kolmogorov backward equation for
is

where
is the Dirac delta in
centered at
, and
is the infinitesimal generator of the diffusion:
![{\displaystyle A\,f(x)\;=\;\sum _{i}\,\mu _{i}(x)\,{\frac {\partial f}{\partial x_{i}}}(x)\;+\;{\frac {1}{2}}\,\sum _{i,j}\,{\bigl [}\sigma (x)\,\sigma (x)^{\mathsf {T}}{\bigr ]}_{ij}\,{\frac {\partial ^{2}f}{\partial x_{i}\,\partial x_{j}}}(x).}](/media/api/rest_v1/media/math/render/svg/e41407c6d8f5a147d2dfe7347768b69a59339c0c)
The backward Kolmogorov equation can be used to derive the Feynman–Kac formula. Given a function
that satisfies the boundary value problem

and given
that, just as before, is a solution of

then if the expectation value is finite
![{\displaystyle \int _{0}^{T}\,\mathbb {E} \!{\Bigl [}{\bigl (}\sigma (t,X_{t})\,{\frac {\partial F}{\partial x}}(t,X_{t}){\bigr )}^{2}{\Bigr ]}\,dt\;<\;\infty ,}](/media/api/rest_v1/media/math/render/svg/dcd9b7298615801455633bbb78f373a93fb4977d)
then the Feynman–Kac formula is obtained:
![{\displaystyle F(t,x)\;=\;\mathbb {E} \!{\bigl [}\;\Phi (X_{T})\,{\big |}\;X_{t}=x{\bigr ]}.}](/media/api/rest_v1/media/math/render/svg/92d5a8e5b8c5c2cbf512b0185f796b3c698d1598)
Proof. Apply Itô’s formula to
for
:

Because
solves the PDE, the first integral is zero. Taking conditional expectation and using the martingale property of the Itô integral gives
![{\displaystyle \mathbb {E} \!{\bigl [}F(T,X_{T})\,{\big |}\;X_{t}=x{\bigr ]}\;=\;F(t,x).}](/media/api/rest_v1/media/math/render/svg/97f91b2ced4a57337269066e3e2a18982226659f)
Substitute
to conclude
![{\displaystyle F(t,x)\;=\;\mathbb {E} \!{\bigl [}\;\Phi (X_{T})\,{\big |}\;X_{t}=x{\bigr ]}.}](/media/api/rest_v1/media/math/render/svg/92d5a8e5b8c5c2cbf512b0185f796b3c698d1598)
Derivation of the backward Kolmogorov equation
The Feynman–Kac representation can be used to find the PDE solved by the transition densities of solutions to SDEs. Suppose

For any set
, define
![{\displaystyle p_{B}(t,x;\,T)\;\triangleq \;\mathbb {P} \!{\bigl [}X_{T}\in B\,\mid \,X_{t}=x{\bigr ]}\;=\;\mathbb {E} \!{\bigl [}\mathbf {1} _{B}(X_{T})\,{\big |}\;X_{t}=x{\bigr ]}.}](/media/api/rest_v1/media/math/render/svg/b4e4e55d3e129ee3cc5433091cc31f6a3d53cea5)
By Feynman–Kac (under integrability conditions), taking
, then

where

Assuming Lebesgue measure as the reference, write
for its measure. The transition density
is
![{\displaystyle p(t,x;\,T,y)\;\triangleq \;\lim _{B\to y}\,{\frac {1}{|B|}}\,\mathbb {P} \!{\bigl [}X_{T}\in B\,\mid \,X_{t}=x{\bigr ]}.}](/media/api/rest_v1/media/math/render/svg/2bb5449fe99bb0c92ac69dd6c645ba6055930d52)
Then

Derivation of the forward Kolmogorov equation
The Kolmogorov forward equation is
![{\displaystyle {\frac {\partial }{\partial T}}\,p{\bigl (}t,x;\,T,y{\bigr )}\;=\;A^{*}\!{\bigl [}p{\bigl (}t,x;\,T,y{\bigr )}{\bigr ]},\quad \lim _{T\to t}\,p(t,x;\,T,y)\;=\;\delta _{y}(x).}](/media/api/rest_v1/media/math/render/svg/0c44dc46a4d8b189e431d673b308d4b082f31b64)
For
, the Markov property implies

Differentiate both sides w.r.t.
:
![{\displaystyle 0\;=\;\int _{-\infty }^{\infty }{\Bigl [}{\frac {\partial }{\partial r}}\,p{\bigl (}t,x;\,r,z{\bigr )}\,\cdot \,p{\bigl (}r,z;\,T,y{\bigr )}\;+\;p{\bigl (}t,x;\,r,z{\bigr )}\,\cdot \,{\frac {\partial }{\partial r}}\,p{\bigl (}r,z;\,T,y{\bigr )}{\Bigr ]}\,dz.}](/media/api/rest_v1/media/math/render/svg/6ec536378b45adfa45c13cf244e1901f89255d4b)
From the backward Kolmogorov equation:

Substitute into the integral:
![{\displaystyle 0\;=\;\int _{-\infty }^{\infty }{\Bigl [}{\frac {\partial }{\partial r}}\,p{\bigl (}t,x;\,r,z{\bigr )}\,\cdot \,p{\bigl (}r,z;\,T,y{\bigr )}\;-\;p{\bigl (}t,x;\,r,z{\bigr )}\,\cdot \,A\,p{\bigl (}r,z;\,T,y{\bigr )}{\Bigr ]}\,dz.}](/media/api/rest_v1/media/math/render/svg/ffbc5b6d9e59e45bc9fc8ec9fe3cfd07a282ef32)
By definition of the adjoint operator
:
![{\displaystyle \int _{-\infty }^{\infty }{\bigl [}{\frac {\partial }{\partial r}}\,p{\bigl (}t,x;\,r,z{\bigr )}\;-\;A^{*}\,p{\bigl (}t,x;\,r,z{\bigr )}{\bigr ]}\,p{\bigl (}r,z;\,T,y{\bigr )}\,dz\;=\;0.}](/media/api/rest_v1/media/math/render/svg/7d413321abfe04fb853163889043ca3a50f26476)
Since
can be arbitrary, the bracket must vanish:
![{\displaystyle {\frac {\partial }{\partial r}}\,p{\bigl (}t,x;\,r,z{\bigr )}\;=\;A^{*}{\bigl [}p{\bigl (}t,x;\,r,z{\bigr )}{\bigr ]}.}](/media/api/rest_v1/media/math/render/svg/6e38127aef1300d17c55c6bb5075e3a18b97b8db)
Relabel
and
, yielding the forward Kolmogorov equation:
![{\displaystyle {\frac {\partial }{\partial T}}\,p{\bigl (}t,x;\,T,y{\bigr )}\;=\;A^{*}\!{\bigl [}p{\bigl (}t,x;\,T,y{\bigr )}{\bigr ]},\quad \lim _{T\to t}\,p(t,x;\,T,y)\;=\;\delta _{y}(x).}](/media/api/rest_v1/media/math/render/svg/0c44dc46a4d8b189e431d673b308d4b082f31b64)
Finally,
![{\displaystyle A^{*}\,g(x)\;=\;-\sum _{i}\,{\frac {\partial }{\partial x_{i}}}{\bigl [}\mu _{i}(x)\,g(x){\bigr ]}\;+\;{\frac {1}{2}}\,\sum _{i,j}\,{\frac {\partial ^{2}}{\partial x_{i}\,\partial x_{j}}}{\Bigl [}{\bigl (}\sigma (x)\,\sigma (x)^{\mathsf {T}}{\bigr )}_{ij}\,g(x){\Bigr ]}.}](/media/api/rest_v1/media/math/render/svg/12c6c1abf2957357fd59f55f9cd9bc98bd4480f3)
See also
References
- Etheridge, A. (2002). A Course in Financial Calculus. Cambridge University Press.
- ^ Andrei Kolmogorov, "Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung" (On Analytical Methods in the Theory of Probability), 1931, [1]