From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
In mathematics, Jacobi transform is an integral transform named after the mathematician Carl Gustav Jacob Jacobi , which uses Jacobi polynomials
P
n
α
,
β
(
x
)
{\displaystyle P_{n}^{\alpha ,\beta }(x)}
as kernels of the transform
.[ 1] [ 2] [ 3] [ 4]
The Jacobi transform of a function
F
(
x
)
{\displaystyle F(x)}
is[ 5]
J
{
F
(
x
)
}
=
f
α
,
β
(
n
)
=
∫
−
1
1
(
1
−
x
)
α
(
1
+
x
)
β
P
n
α
,
β
(
x
)
F
(
x
)
d
x
{\displaystyle J\{F(x)\}=f^{\alpha ,\beta }(n)=\int _{-1}^{1}(1-x)^{\alpha }\ (1+x)^{\beta }\ P_{n}^{\alpha ,\beta }(x)\ F(x)\ dx}
The inverse Jacobi transform is given by
J
−
1
{
f
α
,
β
(
n
)
}
=
F
(
x
)
=
∑
n
=
0
∞
1
δ
n
f
α
,
β
(
n
)
P
n
α
,
β
(
x
)
,
where
δ
n
=
2
α
+
β
+
1
Γ
(
n
+
α
+
1
)
Γ
(
n
+
β
+
1
)
n
!
(
α
+
β
+
2
n
+
1
)
Γ
(
n
+
α
+
β
+
1
)
{\displaystyle J^{-1}\{f^{\alpha ,\beta }(n)\}=F(x)=\sum _{n=0}^{\infty }{\frac {1}{\delta _{n}}}f^{\alpha ,\beta }(n)P_{n}^{\alpha ,\beta }(x),\quad {\text{where}}\quad \delta _{n}={\frac {2^{\alpha +\beta +1}\Gamma (n+\alpha +1)\Gamma (n+\beta +1)}{n!(\alpha +\beta +2n+1)\Gamma (n+\alpha +\beta +1)}}}
Some Jacobi transform pairs
F
(
x
)
{\displaystyle F(x)\,}
f
α
,
β
(
n
)
{\displaystyle f^{\alpha ,\beta }(n)\,}
x
m
,
m
<
n
{\displaystyle x^{m},\ m<n\,}
0
{\displaystyle 0}
x
n
{\displaystyle x^{n}\,}
n
!
(
α
+
β
+
2
n
+
1
)
δ
n
{\displaystyle n!(\alpha +\beta +2n+1)\delta _{n}}
P
m
α
,
β
(
x
)
{\displaystyle P_{m}^{\alpha ,\beta }(x)\,}
δ
n
δ
m
,
n
{\displaystyle \delta _{n}\delta _{m,n}}
(
1
+
x
)
a
−
β
{\displaystyle (1+x)^{a-\beta }\,}
(
n
+
α
n
)
2
α
+
a
+
1
Γ
(
a
+
1
)
Γ
(
α
+
1
)
Γ
(
a
−
β
+
1
)
Γ
(
α
+
a
+
n
+
2
)
Γ
(
a
−
β
+
n
+
1
)
{\displaystyle {\binom {n+\alpha }{n}}2^{\alpha +a+1}{\frac {\Gamma (a+1)\Gamma (\alpha +1)\Gamma (a-\beta +1)}{\Gamma (\alpha +a+n+2)\Gamma (a-\beta +n+1)}}}
(
1
−
x
)
σ
−
α
,
ℜ
σ
>
−
1
{\displaystyle (1-x)^{\sigma -\alpha },\ \Re \sigma >-1\,}
2
σ
+
β
+
1
n
!
Γ
(
α
−
σ
)
Γ
(
σ
+
1
)
Γ
(
n
+
β
+
1
)
Γ
(
α
−
σ
+
n
)
Γ
(
β
+
σ
+
n
+
2
)
{\displaystyle {\frac {2^{\sigma +\beta +1}}{n!\Gamma (\alpha -\sigma )}}{\frac {\Gamma (\sigma +1)\Gamma (n+\beta +1)\Gamma (\alpha -\sigma +n)}{\Gamma (\beta +\sigma +n+2)}}}
(
1
−
x
)
σ
−
β
P
m
α
,
σ
(
x
)
,
ℜ
σ
>
−
1
{\displaystyle (1-x)^{\sigma -\beta }P_{m}^{\alpha ,\sigma }(x),\ \Re \sigma >-1\,}
2
α
+
σ
+
1
m
!
(
n
−
m
)
!
Γ
(
n
+
α
+
1
)
Γ
(
α
+
β
+
m
+
n
+
1
)
Γ
(
σ
+
m
+
1
)
Γ
(
α
−
β
+
1
)
Γ
(
α
+
β
+
n
+
1
)
Γ
(
α
+
σ
+
m
+
n
+
2
)
Γ
(
α
−
β
+
m
+
1
)
{\displaystyle {\frac {2^{\alpha +\sigma +1}}{m!(n-m)!}}{\frac {\Gamma (n+\alpha +1)\Gamma (\alpha +\beta +m+n+1)\Gamma (\sigma +m+1)\Gamma (\alpha -\beta +1)}{\Gamma (\alpha +\beta +n+1)\Gamma (\alpha +\sigma +m+n+2)\Gamma (\alpha -\beta +m+1)}}}
Some more Jacobi transform pairs
F
(
x
)
{\displaystyle F(x)\,}
f
α
,
β
(
n
)
{\displaystyle f^{\alpha ,\beta }(n)\,}
2
α
+
β
Q
−
1
(
1
−
z
+
Q
)
−
α
(
1
+
z
+
Q
)
−
β
,
Q
=
(
1
−
2
x
z
+
z
2
)
1
/
2
,
|
z
|
<
1
{\displaystyle 2^{\alpha +\beta }Q^{-1}(1-z+Q)^{-\alpha }(1+z+Q)^{-\beta },\ Q=(1-2xz+z^{2})^{1/2},\ |z|<1\,}
∑
n
=
0
∞
δ
n
z
n
{\displaystyle \sum _{n=0}^{\infty }\delta _{n}z^{n}}
(
1
−
x
)
−
α
(
1
+
x
)
−
β
d
d
x
[
(
1
−
x
)
α
+
1
(
1
+
x
)
β
+
1
d
d
x
]
F
(
x
)
{\displaystyle (1-x)^{-\alpha }(1+x)^{-\beta }{\frac {d}{dx}}\left[(1-x)^{\alpha +1}(1+x)^{\beta +1}{\frac {d}{dx}}\right]F(x)\,}
−
n
(
n
+
α
+
β
+
1
)
f
α
,
β
(
n
)
{\displaystyle -n(n+\alpha +\beta +1)f^{\alpha ,\beta }(n)}
{
(
1
−
x
)
−
α
(
1
+
x
)
−
β
d
d
x
[
(
1
−
x
)
α
+
1
(
1
+
x
)
β
+
1
d
d
x
]
}
k
F
(
x
)
{\displaystyle \left\{(1-x)^{-\alpha }(1+x)^{-\beta }{\frac {d}{dx}}\left[(1-x)^{\alpha +1}(1+x)^{\beta +1}{\frac {d}{dx}}\right]\right\}^{k}F(x)\,}
(
−
1
)
k
n
k
(
n
+
α
+
β
+
1
)
k
f
α
,
β
(
n
)
{\displaystyle (-1)^{k}n^{k}(n+\alpha +\beta +1)^{k}f^{\alpha ,\beta }(n)}
References
^ Debnath, L. "On Jacobi Transform." Bull. Cal. Math. Soc 55.3 (1963): 113-120.
^ Debnath, L. "SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS BY JACOBI TRANSFORM." BULLETIN OF THE CALCUTTA MATHEMATICAL SOCIETY 59.3-4 (1967): 155.
^ Scott, E. J. "Jacobi transforms." (1953).
^ Shen, Jie; Wang, Yingwei; Xia, Jianlin (2019). "Fast structured Jacobi-Jacobi transforms" . Math. Comp . 88 (318): 1743– 1772. doi :10.1090/mcom/3377 .
^ Debnath, Lokenath, and Dambaru Bhatta. Integral transforms and their applications. CRC press, 2014.