Jump to content

Inverse Pythagorean theorem

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
Comparison of the inverse Pythagorean theorem with the Pythagorean theorem using the smallest positive integer inverse-Pythagorean triple in the table below.
Base
Pytha-
gorean
triple
AC BC CD AB
(3, 4, 5) 20 = 5 15 = 5 12 = 4 25 = 52
(5, 12, 13) 156 = 12×13 65 = 5×13 60 = 5×12 169 = 132
(8, 15, 17) 255 = 15×17 136 = 8×17 120 = 8×15 289 = 172
(7, 24, 25) 600 = 24×25 175 = 7×25 168 = 7×24 625 = 252
(20, 21, 29) 609 = 21×29 580 = 20×29 420 = 20×21 841 = 292
All positive integer primitive inverse-Pythagorean triples having up to three digits, with the hypotenuse for comparison

In geometry, the inverse Pythagorean theorem (also known as the reciprocal Pythagorean theorem[1] or the upside down Pythagorean theorem[2]) is as follows:[3]

Let A, B be the endpoints of the hypotenuse of a right triangle ABC. Let D be the foot of a perpendicular dropped from C, the vertex of the right angle, to the hypotenuse. Then

This theorem should not be confused with proposition 48 in book 1 of Euclid's Elements, the converse of the Pythagorean theorem, which states that if the square on one side of a triangle is equal to the sum of the squares on the other two sides then the other two sides contain a right angle.

Proof

The area of triangle ABC can be expressed in terms of either AC and BC, or AB and CD:

given CD > 0, AC > 0 and BC > 0.

Using the Pythagorean theorem,

as above.

Note in particular:

Special case of the cruciform curve

The cruciform curve or cross curve is a quartic plane curve given by the equation

where the two parameters determining the shape of the curve, a and b are each CD.

Substituting x with AC and y with BC gives

Inverse-Pythagorean triples can be generated using integer parameters t and u as follows.[4]

Application

If two identical lamps are placed at A and B, the theorem and the inverse-square law imply that the light intensity at C is the same as when a single lamp is placed at D.

See also

References

  1. ^ R. B. Nelsen, Proof Without Words: A Reciprocal Pythagorean Theorem, Mathematics Magazine, 82, December 2009, p. 370
  2. ^ The upside-down Pythagorean theorem, Jennifer Richinick, The Mathematical Gazette, Vol. 92, No. 524 (July 2008), pp. 313-316
  3. ^ Johan Wästlund, "Summing inverse squares by euclidean geometry", http://www.math.chalmers.se/~wastlund/Cosmic.pdf, pp. 4–5.
  4. ^ "Diophantine equation of three variables".