Jump to content

Integral graph

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
The blue graph, C4, is one of the only integral cycle graphs, whose adjacency matrix has eigenvalues . The red graph is not integral, as its eigenvalues are .

In the mathematical field of graph theory, an integral graph is a graph whose adjacency matrix's spectrum consists entirely of integers. In other words, a graph is an integral graph if all of the roots of the characteristic polynomial of its adjacency matrix are integers.[1]

The notion was introduced in 1974 by Frank Harary and Allen Schwenk.[2]

Examples

References

  1. ^ Weisstein, Eric W., "Integral Graph", MathWorld
  2. ^ a b c d e f Harary, Frank; Schwenk, Allen J. (1974), "Which graphs have integral spectra?", in Bari, Ruth A.; Harary, Frank (eds.), Graphs and Combinatorics: Proceedings of the Capital Conference on Graph Theory and Combinatorics at the George Washington University, Washington, D.C., June 18–22, 1973, Lecture Notes in Mathematics, vol. 406, Springer, pp. 45–51, doi:10.1007/BFb0066434, MR 0387124
  3. ^ Doob, Michael (1970), "On characterizing certain graphs with four eigenvalues by their spectra", Linear Algebra and its Applications, 3: 461–482, doi:10.1016/0024-3795(70)90037-6, MR 0285432
  4. ^ Sander, Torsten (2009), "Sudoku graphs are integral", Electronic Journal of Combinatorics, 16 (1): Note 25, 7, MR 2529816