Jump to content

Integrable module

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

In algebra, an integrable module (or integrable representation) of a Kac–Moody algebra (a certain infinite-dimensional Lie algebra) is a representation of such that (1) it is a sum of weight spaces and (2) the Chevalley generators of are locally nilpotent.[1] For example, the adjoint representation of a Kac–Moody algebra is integrable.[2]

Notes

  1. ^ Kac 1990, § 3.6.
  2. ^ Kac 1990, Lemma 3.5.

References

  • Kac, Victor (1990). Infinite dimensional Lie algebras (3rd ed.). Cambridge University Press. ISBN 0-521-46693-8.