Jump to content

Inflation-restriction exact sequence

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

In mathematics, the inflation-restriction exact sequence is an exact sequence occurring in group cohomology and is a special case of the five-term exact sequence arising from the study of spectral sequences.

Specifically, let G be a group, N a normal subgroup, and A an abelian group which is equipped with an action of G, i.e., a homomorphism from G to the automorphism group of A. The quotient group G/N acts on

AN = { aA : na = a for all nN}.

Then the inflation-restriction exact sequence is:

0 → H 1(G/N, AN) → H 1(G, A) → H 1(N, A)G/NH 2(G/N, AN) →H 2(G, A)

In this sequence, there are maps

  • inflation H 1(G/N, AN) → H 1(G, A)
  • restriction H 1(G, A) → H 1(N, A)G/N
  • transgression H 1(N, A)G/NH 2(G/N, AN)
  • inflation H 2(G/N, AN) →H 2(G, A)

The inflation and restriction are defined for general n:

  • inflation Hn(G/N, AN) → Hn(G, A)
  • restriction Hn(G, A) → Hn(N, A)G/N

The transgression is defined for general n

  • transgression Hn(N, A)G/NHn+1(G/N, AN)

only if Hi(N, A)G/N = 0 for in − 1.[1]

The sequence for general n may be deduced from the case n = 1 by dimension-shifting or from the Lyndon–Hochschild–Serre spectral sequence.[2]

Notes

  1. ^ Gille & Szamuely (2006) p.67
  2. ^ Gille & Szamuely (2006) p. 68

References

  • Gille, Philippe; Szamuely, Tamás (2006). Central simple algebras and Galois cohomology. Cambridge Studies in Advanced Mathematics. Vol. 101. Cambridge: Cambridge University Press. ISBN 0-521-86103-9. Zbl 1137.12001.
  • Hazewinkel, Michiel (1995). Handbook of Algebra, Volume 1. Elsevier. p. 282. ISBN 0444822127.
  • Koch, Helmut (1997). Algebraic Number Theory. Encycl. Math. Sci. Vol. 62 (2nd printing of 1st ed.). Springer-Verlag. ISBN 3-540-63003-1. Zbl 0819.11044.
  • Neukirch, Jürgen; Schmidt, Alexander; Wingberg, Kay (2008). Cohomology of Number Fields. Grundlehren der Mathematischen Wissenschaften. Vol. 323 (2nd ed.). Springer-Verlag. pp. 112–113. ISBN 978-3-540-37888-4. Zbl 1136.11001.
  • Schmid, Peter (2007). The Solution of The K(GV) Problem. Advanced Texts in Mathematics. Vol. 4. Imperial College Press. p. 214. ISBN 978-1860949708.
  • Serre, Jean-Pierre (1979). Local Fields. Graduate Texts in Mathematics. Vol. 67. Translated by Greenberg, Marvin Jay. Springer-Verlag. pp. 117–118. ISBN 0-387-90424-7. Zbl 0423.12016.