From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
Some mathematicians defined this type incomplete-version of Bessel function or this type generalized-version of incomplete gamma function :[ 1] [ 2] [ 3] [ 4] [ 5]
K
v
(
x
,
y
)
=
∫
1
∞
e
−
x
t
−
y
t
t
v
+
1
d
t
{\displaystyle K_{v}(x,y)=\int _{1}^{\infty }{\frac {e^{-xt-{\frac {y}{t}}}}{t^{v+1}}}~dt}
γ
(
α
,
x
;
b
)
=
∫
0
x
t
α
−
1
e
−
t
−
b
t
d
t
{\displaystyle \gamma (\alpha ,x;b)=\int _{0}^{x}t^{\alpha -1}e^{-t-{\frac {b}{t}}}~dt}
Γ
(
α
,
x
;
b
)
=
∫
x
∞
t
α
−
1
e
−
t
−
b
t
d
t
{\displaystyle \Gamma (\alpha ,x;b)=\int _{x}^{\infty }t^{\alpha -1}e^{-t-{\frac {b}{t}}}~dt}
Properties
K
v
(
x
,
y
)
=
x
v
Γ
(
−
v
,
x
;
x
y
)
{\displaystyle K_{v}(x,y)=x^{v}\Gamma (-v,x;xy)}
K
v
(
x
,
y
)
+
K
−
v
(
y
,
x
)
=
2
x
v
2
y
v
2
K
v
(
2
x
y
)
{\displaystyle K_{v}(x,y)+K_{-v}(y,x)={\frac {2x^{\frac {v}{2}}}{y^{\frac {v}{2}}}}K_{v}(2{\sqrt {xy}})}
γ
(
α
,
x
;
0
)
=
γ
(
α
,
x
)
{\displaystyle \gamma (\alpha ,x;0)=\gamma (\alpha ,x)}
Γ
(
α
,
x
;
0
)
=
Γ
(
α
,
x
)
{\displaystyle \Gamma (\alpha ,x;0)=\Gamma (\alpha ,x)}
γ
(
α
,
x
;
b
)
+
Γ
(
α
,
x
;
b
)
=
2
b
α
2
K
α
(
2
b
)
{\displaystyle \gamma (\alpha ,x;b)+\Gamma (\alpha ,x;b)=2b^{\frac {\alpha }{2}}K_{\alpha }(2{\sqrt {b}})}
One of the advantage of defining this type incomplete-version of Bessel function
K
v
(
x
,
y
)
{\displaystyle K_{v}(x,y)}
is that even for example the associated Anger–Weber function defined in Digital Library of Mathematical Functions [ 6] can related:
A
ν
(
z
)
=
1
π
∫
0
∞
e
−
ν
t
−
z
sinh
t
d
t
=
1
π
∫
0
∞
e
−
(
ν
+
1
)
t
−
z
e
t
2
+
z
2
e
t
d
(
e
t
)
=
1
π
∫
1
∞
e
−
z
t
2
+
z
2
t
t
ν
+
1
d
t
=
1
π
K
ν
(
z
2
,
−
z
2
)
{\displaystyle \mathbf {A} _{\nu }(z)={\frac {1}{\pi }}\int _{0}^{\infty }e^{-\nu t-z\sinh t}~dt={\frac {1}{\pi }}\int _{0}^{\infty }e^{-(\nu +1)t-{\frac {ze^{t}}{2}}+{\frac {z}{2e^{t}}}}~d(e^{t})={\frac {1}{\pi }}\int _{1}^{\infty }{\frac {e^{-{\frac {zt}{2}}+{\frac {z}{2t}}}}{t^{\nu +1}}}~dt={\frac {1}{\pi }}K_{\nu }\left({\frac {z}{2}},-{\frac {z}{2}}\right)}
Recurrence relations
K
v
(
x
,
y
)
{\displaystyle K_{v}(x,y)}
satisfy this recurrence relation :
x
K
v
−
1
(
x
,
y
)
+
v
K
v
(
x
,
y
)
−
y
K
v
+
1
(
x
,
y
)
=
e
−
x
−
y
{\displaystyle xK_{v-1}(x,y)+vK_{v}(x,y)-yK_{v+1}(x,y)=e^{-x-y}}
References
^ "incompleteBesselK function | R Documentation" . www.rdocumentation.org .
^ "incompleteBesselK: The Incomplete Bessel K Function in DistributionUtils: Distribution Utilities" . rdrr.io .
^ Harris, Frank E. (2008). "Incomplete Bessel, generalized incomplete gamma, or leaky aquifer functions" (PDF) . Journal of Computational and Applied Mathematics . 215 : 260– 269. doi :10.1016/j.cam.2007.04.008 . Retrieved 2020-01-08 .
^ "Generalized incomplete gamma function and its application" . 2018-01-14. Retrieved 2020-01-08 .
^ Didem Aşçıoğlu (September 2015). The Generalized Incomplete Gamma Functions (PDF) (Master thesis). Eastern Mediterranean University. S2CID 126117454 . Archived from the original (PDF) on 2019-12-23. Retrieved 2019-12-23 – via Semantic Scholar.
^ Paris, R. B. (2010), "Anger-Weber Functions" , in Olver, Frank W. J. ; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions , Cambridge University Press, ISBN 978-0-521-19225-5 , MR 2723248 .