Jump to content

Homogeneous tree

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

In descriptive set theory, a tree over a product set is said to be homogeneous if there is a system of measures such that the following conditions hold:

  • is a countably-additive measure on .
  • The measures are in some sense compatible under restriction of sequences: if , then .
  • If is in the projection of , the ultrapower by is wellfounded.

An equivalent definition is produced when the final condition is replaced with the following:

  • There are such that if is in the projection of and , then there is such that . This condition can be thought of as a sort of countable completeness condition on the system of measures.

is said to be -homogeneous if each is -complete.

Homogeneous trees are involved in Martin and Steel's proof of projective determinacy.

References

  • Martin, Donald A. and John R. Steel (Jan 1989). "A Proof of Projective Determinacy". Journal of the American Mathematical Society. 2 (1). Journal of the American Mathematical Society, Vol. 2, No. 1: 71–125. doi:10.2307/1990913. JSTOR 1990913.