Jump to content

Hodge–Tate module

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

In mathematics, a Hodge–Tate module is an analogue of a Hodge structure over p-adic fields. Serre (1967) introduced and named Hodge–Tate structures using the results of Tate (1967) on p-divisible groups.

Definition

Suppose that G is the absolute Galois group of a p-adic field K. Then G has a canonical cyclotomic character χ given by its action on the pth power roots of unity. Let C be the completion of the algebraic closure of K. Then a finite-dimensional vector space over C with a semi-linear action of the Galois group G is said to be of Hodge–Tate type if it is generated by the eigenvectors of integral powers of χ.

See also

References

  • Faltings, Gerd (1988), "p-adic Hodge theory", Journal of the American Mathematical Society, 1 (1): 255–299, doi:10.2307/1990970, ISSN 0894-0347, JSTOR 1990970, MR 0924705
  • Serre, Jean-Pierre (1967), "Sur les groupes de Galois attachés aux groupes p-divisibles", in Springer, Tonny A. (ed.), Proceedings of a Conference on Local Fields (Driebergen, 1966), Berlin, New York: Springer-Verlag, pp. 118–131, ISBN 978-3-540-03953-2, MR 0242839
  • Tate, John T. (1967), "p-divisible groups.", in Springer, Tonny A. (ed.), Proc. Conf. Local Fields (Driebergen, 1966), Berlin, New York: Springer-Verlag, MR 0231827