Jump to content

H-matrix (iterative method)

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

In mathematics, an H-matrix is a matrix whose comparison matrix is an M-matrix. It is useful in iterative methods.

Definition: Let A = (aij) be a n × n complex matrix. Then comparison matrix M(A) of complex matrix A is defined as M(A) = αij where αij = −|Aij| for all ij, 1 ≤ i,jn and αij = |Aij| for all i = j, 1 ≤ i,jn. If M(A) is a M-matrix, A is a H-matrix.

Invertible H-matrix guarantees convergence of Gauss–Seidel iterative methods.[1]

See also

References

  1. ^ Zhang, Cheng-yi; Ye, Dan; Zhong, Cong-Lei; SHUANGHUA, SHUANGHUA (2015). "Convergence on Gauss–Seidel iterative methods for linear systems with general H-matrices". The Electronic Journal of Linear Algebra. 30: 843–870. arXiv:1410.3196. doi:10.13001/1081-3810.1972. Retrieved 21 June 2018.