Jump to content

Gradient-like vector field

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

In differential topology, a mathematical discipline, and more specifically in Morse theory, a gradient-like vector field is a generalization of gradient vector field.

The primary motivation is as a technical tool in the construction of Morse functions, to show that one can construct a function whose critical points are at distinct levels. One first constructs a Morse function, then uses gradient-like vector fields to move around the critical points, yielding a different Morse function.

Definition

Given a Morse function f on a manifold M, a gradient-like vector field X for the function f is, informally:

  • away from critical points, X points "in the same direction as" the gradient of f, and
  • near a critical point (in the neighborhood of a critical point), it equals the gradient of f, when f is written in standard form given in the Morse lemmas.

Formally:[1]

  • away from critical points,
  • around every critical point there is a neighborhood on which f is given as in the Morse lemmas:

and on which X equals the gradient of f.

Dynamical system

The associated dynamical system of a gradient-like vector field, a gradient-like dynamical system, is a special case of a Morse–Smale system.

References