Jump to content

Fundamental theorem of topos theory

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

In mathematics, The fundamental theorem of topos theory states that the slice of a topos over any one of its objects is itself a topos. Moreover, if there is a morphism in then there is a functor which preserves exponentials and the subobject classifier.

The pullback functor

For any morphism f in there is an associated "pullback functor" which is key in the proof of the theorem. For any other morphism g in which shares the same codomain as f, their product is the diagonal of their pullback square, and the morphism which goes from the domain of to the domain of f is opposite to g in the pullback square, so it is the pullback of g along f, which can be denoted as .

Note that a topos is isomorphic to the slice over its own terminal object, i.e. , so for any object A in there is a morphism and thereby a pullback functor , which is why any slice is also a topos.

For a given slice let denote an object of it, where X is an object of the base category. Then is a functor which maps: . Now apply to . This yields

so this is how the pullback functor maps objects of to . Furthermore, note that any element C of the base topos is isomorphic to , therefore if then and so that is indeed a functor from the base topos to its slice .

Logical interpretation

Consider a pair of ground formulas and whose extensions and (where the underscore here denotes the null context) are objects of the base topos. Then implies if and only if there is a monic from to . If these are the case then, by theorem, the formula is true in the slice , because the terminal object of the slice factors through its extension . In logical terms, this could be expressed as

so that slicing by the extension of would correspond to assuming as a hypothesis. Then the theorem would say that making a logical assumption does not change the rules of topos logic.

See also

References

  • McLarty, Colin (1992). "§17.3 The fundamental theorem". Elementary Categories, Elementary Toposes. Oxford Logic Guides. Vol. 21. Oxford University Press. p. 158. ISBN 978-0-19-158949-2.