Jump to content

Extravagant number

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

In number theory, an extravagant number (also known as a wasteful number) is a natural number in a given number base that has fewer digits than the number of digits in its prime factorization in the given number base (including exponents).[1] For example, in base 10, 4 = 22, 6 = 2×3, 8 = 23, and 9 = 32 are extravagant numbers (sequence A046760 in the OEIS).

There are infinitely many extravagant numbers in every base.[1]

Mathematical definition

Let be a number base, and let be the number of digits in a natural number for base . A natural number has the prime factorisation

where is the p-adic valuation of , and is an extravagant number in base if

See also

Notes

  1. ^ a b Darling, David J. (2004). The universal book of mathematics: from Abracadabra to Zeno's paradoxes. John Wiley & Sons. p. 102. ISBN 978-0-471-27047-8.

References