From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
Generalization of natural transformations
In mathematics , specifically in category theory , an extranatural transformation [ 1] is a generalization of the notion of natural transformation .
Definition
Let
F
:
A
×
B
o
p
×
B
→
D
{\displaystyle F:A\times B^{\mathrm {op} }\times B\rightarrow D}
and
G
:
A
×
C
o
p
×
C
→
D
{\displaystyle G:A\times C^{\mathrm {op} }\times C\rightarrow D}
be two functors of categories.
A family
η
(
a
,
b
,
c
)
:
F
(
a
,
b
,
b
)
→
G
(
a
,
c
,
c
)
{\displaystyle \eta (a,b,c):F(a,b,b)\rightarrow G(a,c,c)}
is said to be natural in a and extranatural in b and c if the following holds:
η
(
−
,
b
,
c
)
{\displaystyle \eta (-,b,c)}
is a natural transformation (in the usual sense).
(extranaturality in b )
∀
(
g
:
b
→
b
′
)
∈
M
o
r
B
{\displaystyle \forall (g:b\rightarrow b^{\prime })\in \mathrm {Mor} \,B}
,
∀
a
∈
A
{\displaystyle \forall a\in A}
,
∀
c
∈
C
{\displaystyle \forall c\in C}
the following diagram commutes
F
(
a
,
b
′
,
b
)
→
F
(
1
,
1
,
g
)
F
(
a
,
b
′
,
b
′
)
F
(
1
,
g
,
1
)
↓
η
(
a
,
b
′
,
c
)
↓
F
(
a
,
b
,
b
)
→
η
(
a
,
b
,
c
)
G
(
a
,
c
,
c
)
{\displaystyle {\begin{matrix}F(a,b',b)&\xrightarrow {F(1,1,g)} &F(a,b',b')\\_{F(1,g,1)}\downarrow \qquad &&_{\eta (a,b',c)}\downarrow \qquad \\F(a,b,b)&\xrightarrow {\eta (a,b,c)} &G(a,c,c)\end{matrix}}}
(extranaturality in c )
∀
(
h
:
c
→
c
′
)
∈
M
o
r
C
{\displaystyle \forall (h:c\rightarrow c^{\prime })\in \mathrm {Mor} \,C}
,
∀
a
∈
A
{\displaystyle \forall a\in A}
,
∀
b
∈
B
{\displaystyle \forall b\in B}
the following diagram commutes
F
(
a
,
b
,
b
)
→
η
(
a
,
b
,
c
′
)
G
(
a
,
c
′
,
c
′
)
η
(
a
,
b
,
c
)
↓
G
(
1
,
h
,
1
)
↓
G
(
a
,
c
,
c
)
→
G
(
1
,
1
,
h
)
G
(
a
,
c
,
c
′
)
{\displaystyle {\begin{matrix}F(a,b,b)&\xrightarrow {\eta (a,b,c')} &G(a,c',c')\\_{\eta (a,b,c)}\downarrow \qquad &&_{G(1,h,1)}\downarrow \qquad \\G(a,c,c)&\xrightarrow {G(1,1,h)} &G(a,c,c')\end{matrix}}}
Properties
Extranatural transformations can be used to define wedges and thereby ends [ 2] (dually co-wedges and co-ends), by setting
F
{\displaystyle F}
(dually
G
{\displaystyle G}
) constant.
Extranatural transformations can be defined in terms of dinatural transformations , of which they are a special case.[ 2]
See also
References
^ Eilenberg and Kelly , A generalization of the functorial calculus, J. Algebra 3 366–375 (1966)
^ a b Fosco Loregian, This is the (co)end, my only (co)friend , arXiv preprint [1]
External links