Jump to content

Extensions of Fisher's method

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

In statistics, extensions of Fisher's method are a group of approaches that allow approximately valid statistical inferences to be made when the assumptions required for the direct application of Fisher's method are not valid. Fisher's method is a way of combining the information in the p-values from different statistical tests so as to form a single overall test: this method requires that the individual test statistics (or, more immediately, their resulting p-values) should be statistically independent.

Dependent statistics

A principal limitation of Fisher's method is its exclusive design to combine independent p-values, which renders it an unreliable technique to combine dependent p-values. To overcome this limitation, a number of methods were developed to extend its utility.

Known covariance

Brown's method

Fisher's method showed that the log-sum of k independent p-values follow a χ2-distribution with 2k degrees of freedom:[1][2]

In the case that these p-values are not independent, Brown proposed the idea of approximating X using a scaled χ2-distribution, 2(k’), with k’ degrees of freedom.

The mean and variance of this scaled χ2 variable are:

where and . This approximation is shown to be accurate up to two moments.

Unknown covariance

Harmonic mean p-value

The harmonic mean p-value offers an alternative to Fisher's method for combining p-values when the dependency structure is unknown but the tests cannot be assumed to be independent.[3][4]

Kost's method: t approximation

This method requires the test statistics' covariance structure to be known up to a scalar multiplicative constant.[2]

Cauchy combination test

This is conceptually similar to Fisher's method: it computes a sum of transformed p-values. Unlike Fisher's method, which uses a log transformation to obtain a test statistic which has a chi-squared distribution under the null, the Cauchy combination test uses a tan transformation to obtain a test statistic whose tail is asymptotic to that of a Cauchy distribution under the null. The test statistic is:

where are non-negative weights, subject to . Under the null, are uniformly distributed, therefore are Cauchy distributed. Under some mild assumptions, but allowing for arbitrary dependency between the , the tail of the distribution of X is asymptotic to that of a Cauchy distribution. More precisely, letting W denote a standard Cauchy random variable:

This leads to a combined hypothesis test, in which X is compared to the quantiles of the Cauchy distribution.[5]

References

  1. ^ Brown, M. (1975). "A method for combining non-independent, one-sided tests of significance". Biometrics. 31 (4): 987–992. doi:10.2307/2529826. JSTOR 2529826.
  2. ^ a b Kost, J.; McDermott, M. (2002). "Combining dependent P-values". Statistics & Probability Letters. 60 (2): 183–190. doi:10.1016/S0167-7152(02)00310-3.
  3. ^ Good, I J (1958). "Significance tests in parallel and in series". Journal of the American Statistical Association. 53 (284): 799–813. doi:10.1080/01621459.1958.10501480. JSTOR 2281953.
  4. ^ Wilson, D J (2019). "The harmonic mean p-value for combining dependent tests". Proceedings of the National Academy of Sciences USA. 116 (4): 1195–1200. doi:10.1073/pnas.1814092116. PMC 6347718. PMID 30610179.
  5. ^ Liu Y, Xie J (2020). "Cauchy combination test: a powerful test with analytic p-value calculation under arbitrary dependency structures". Journal of the American Statistical Association. 115 (529): 393–402. doi:10.1080/01621459.2018.1554485. PMC 7531765.