Jump to content

Esscher transform

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

In actuarial science, the Esscher transform (Gerber & Shiu 1994) is a transform that takes a probability density f(x) and transforms it to a new probability density f(xh) with a parameter h. It was introduced by F. Esscher in 1932 (Esscher 1932).

Definition

Let f(x) be a probability density. Its Esscher transform is defined as

More generally, if μ is a probability measure, the Esscher transform of μ is a new probability measure Eh(μ) which has density

with respect to μ.

Basic properties

Combination
The Esscher transform of an Esscher transform is again an Esscher transform: Eh1 Eh2 = Eh1 + h2.
Inverse
The inverse of the Esscher transform is the Esscher transform with negative parameter: E−1
h
 = Eh
Mean move
The effect of the Esscher transform on the normal distribution is moving the mean:

Examples

Distribution Esscher transform
Bernoulli Bernoulli(p)  
Binomial B(np)  
Normal N(μ, σ2)  
Poisson Pois(λ)  

See also

References

  • Gerber, Hans U.; Shiu, Elias S. W. (1994). "Option Pricing by Esscher Transforms" (PDF). Transactions of the Society of Actuaries. 46: 99–191.
  • Esscher, F. (1932). "On the Probability Function in the Collective Theory of Risk". Skandinavisk Aktuarietidskrift. 15 (3): 175–195. doi:10.1080/03461238.1932.10405883.