Jump to content

Equivariant L-function

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

In algebraic number theory, an equivariant Artin L-function is a function associated to a finite Galois extension of global fields created by packaging together the various Artin L-functions associated with the extension. Each extension has many traditional Artin L-functions associated with it, corresponding to the characters of representations of the Galois group. By contrast, each extension has a unique corresponding equivariant L-function.

Equivariant L-functions have become increasingly important as a wide range of conjectures and theorems in number theory have been developed around them. Among these are the Brumer–Stark conjecture, the Coates-Sinnott conjecture, and a recently developed equivariant version of the main conjecture in Iwasawa theory.

References

  • Solomon, David (2010). "Equivariant L-functions at s=0 and s=1". Actes de la conférence "Fonctions L et arithmétique" (PDF). Publications Mathématiques de Besançon. Algèbre et Théorie des Nombres 2010. Besançon: Laboratoire de Mathématique de Besançon. pp. 129–156. Zbl 1315.11095.