Jump to content

Encompassment ordering

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
Triangle diagram of two terms s ≤ t related by the encompassment preorder.

In theoretical computer science, in particular in automated theorem proving and term rewriting, the containment,[1] or encompassment, preorder (≤) on the set of terms, is defined by[2]

s ≤ t if a subterm of t is a substitution instance of s.

It is used e.g. in the Knuth–Bendix completion algorithm.

Properties

Notes

  1. ^ since both f(x) ≤ f(y) and f(y) ≤ f(x) for variable symbols x, y and a function symbol f
  2. ^ since neither a ≤ b nor b ≤ a for distinct constant symbols a, b
  3. ^ i.e. irreflexive, transitive, and well-founded binary relation R such that sRt implies u[sσ]p R u[tσ]p for all terms s, t, u, each path p of u, and each substitution σ

References

  1. ^ Gerard Huet (1981). "A Complete Proof of Correctness of the Knuth–Bendix Completion Algorithm". J. Comput. Syst. Sci. 23 (1): 11–21. doi:10.1016/0022-0000(81)90002-7.
  2. ^ N. Dershowitz, J.-P. Jouannaud (1990). Jan van Leeuwen (ed.). Rewrite Systems. Handbook of Theoretical Computer Science. Vol. B. Elsevier. pp. 243–320. Here:sect.2.1, p. 250
  3. ^ Dershowitz, Jouannaud (1990), sect.5.4, p. 278; somewhat sloppy, R is required to be a "terminating rewrite relation" there.