Jump to content

Electromagnetism uniqueness theorem

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

The electromagnetism uniqueness theorem states the uniqueness (but not necessarily the existence) of a solution to Maxwell's equations, if the boundary conditions provided satisfy the following requirements:[1][2]

  1. At , the initial values of all fields (E, H, B and D) everywhere (in the entire volume considered) is specified;
  2. For all times (of consideration), the component of either the electric field E or the magnetic field H tangential to the boundary surface ( or , where is the normal vector at a point on the boundary surface) is specified.

Note that this theorem must not be misunderstood as that providing boundary conditions (or the field solution itself) uniquely fixes a source distribution, when the source distribution is outside of the volume specified in the initial condition. One example is that the field outside a uniformly charged sphere may also be produced by a point charge placed at the center of the sphere instead, i.e. the source needed to produce such field at a boundary outside the sphere is not unique.

See also

References

  • L.D. Landau, E.M. Lifshitz (1975). The Classical Theory of Fields. Vol. 2 (4th ed.). Butterworth–Heinemann. ISBN 978-0-7506-2768-9.
  • J. D. Jackson (1998). Classical Electrodynamics (3rd ed.). John Wiley & Sons. ISBN 978-0-471-30932-1.
Specific
  1. ^ Smith, Glenn S. (1997-08-13). An Introduction to Classical Electromagnetic Radiation. Cambridge University Press. ISBN 9780521586986.
  2. ^ "2.8: Uniqueness Theorem". Physics LibreTexts. 2020-05-11. Retrieved 2022-12-11.