Jump to content

Double vector bundle

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

In mathematics, a double vector bundle is the combination of two compatible vector bundle structures, which contains in particular the tangent of a vector bundle and the double tangent bundle .

Definition and first consequences

A double vector bundle consists of , where

  1. the side bundles and are vector bundles over the base ,
  2. is a vector bundle on both side bundles and ,
  3. the projection, the addition, the scalar multiplication and the zero map on E for both vector bundle structures are morphisms.

Double vector bundle morphism

A double vector bundle morphism consists of maps , , and such that is a bundle morphism from to , is a bundle morphism from to , is a bundle morphism from to and is a bundle morphism from to .

The 'flip of the double vector bundle is the double vector bundle .

Examples

If is a vector bundle over a differentiable manifold then is a double vector bundle when considering its secondary vector bundle structure.

If is a differentiable manifold, then its double tangent bundle is a double vector bundle.

References

Mackenzie, K. (1992), "Double Lie algebroids and second-order geometry, I", Advances in Mathematics, 94 (2): 180–239, doi:10.1016/0001-8708(92)90036-k