Jump to content

Doob–Meyer decomposition theorem

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

The Doob–Meyer decomposition theorem is a theorem in stochastic calculus stating the conditions under which a submartingale may be decomposed in a unique way as the sum of a martingale and an increasing predictable process. It is named for Joseph L. Doob and Paul-André Meyer.

History

In 1953, Doob published the Doob decomposition theorem which gives a unique decomposition for certain discrete time martingales.[1] He conjectured a continuous time version of the theorem and in two publications in 1962 and 1963 Paul-André Meyer proved such a theorem, which became known as the Doob-Meyer decomposition.[2][3] In honor of Doob, Meyer used the term "class D" to refer to the class of supermartingales for which his unique decomposition theorem applied.[4]

Class D supermartingales

A càdlàg supermartingale is of Class D if and the collection

is uniformly integrable.[5]

The theorem

Let be a cadlag supermartingale of class D. Then there exists a unique, non-decreasing, predictable process with such that is a uniformly integrable martingale.[5]

See also

Notes

  1. ^ Doob 1953
  2. ^ Meyer 1962
  3. ^ Meyer 1963
  4. ^ Protter 2005
  5. ^ a b Protter (2005)

References

  • Doob, J. L. (1953). Stochastic Processes. Wiley.
  • Meyer, Paul-André (1962). "A Decomposition theorem for supermartingales". Illinois Journal of Mathematics. 6 (2): 193–205. doi:10.1215/ijm/1255632318.
  • Meyer, Paul-André (1963). "Decomposition of Supermartingales: the Uniqueness Theorem". Illinois Journal of Mathematics. 7 (1): 1–17. doi:10.1215/ijm/1255637477.
  • Protter, Philip (2005). Stochastic Integration and Differential Equations. Springer-Verlag. pp. 107–113. ISBN 3-540-00313-4.