Jump to content

Disorder problem

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

In the study of stochastic processes in mathematics, a disorder problem or quickest detection problem (formulated by Kolmogorov) is the problem of using ongoing observations of a stochastic process to detect as soon as possible when the probabilistic properties of the process have changed. This is a type of change detection problem.

An example case is to detect the change in the drift parameter of a Wiener process.[1]

See also

Notes

  1. ^ Shiryaev (2007) page 208

References

  • H. Vincent Poor and Olympia Hadjiliadis (2008). Quickest Detection (First ed.). Cambridge: Cambridge University Press. ISBN 978-0-521-62104-5.
  • Shiryaev, Albert N. (2007). Optimal Stopping Rules. Springer. ISBN 978-3-540-74010-0.
  • Gapeev, P.V. (2005). "The disorder problem for compound Poisson processes with exponential jumps". Ann. Appl. Probab. 15 (1A): 487–499. arXiv:math/0503481. doi:10.1214/105051604000000981.
  • Kolmogorov, A. N., Prokhorov, Yu. V. and Shiryaev, A. N. (1990). Methods of detecting spontaneously occurring effects. Proc. Steklov Inst. Math. 1, 1–21.