Jump to content

Dimensional operator

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

In mathematics, specifically set theory, a dimensional operator on a set E is a function from the subsets of E to the subsets of E.

Definition

If the power set of E is denoted P(E) then a dimensional operator on E is a map

that satisfies the following properties for S,TP(E):

  1. Sd(S);
  2. d(S) = d(d(S)) (d is idempotent);
  3. if ST then d(S) ⊆ d(T);
  4. if Ω is the set of finite subsets of S then d(S) = ∪A∈Ωd(A);
  5. if xE and yd(S ∪ {x}) \ d(S), then xd(S ∪ {y}).

The final property is known as the exchange axiom.[1]

Examples

  1. For any set E the identity map on P(E) is a dimensional operator.
  2. The map which takes any subset S of E to E itself is a dimensional operator on E.

References

  1. ^ Julio R. Bastida, Field Extensions and Galois Theory, Addison-Wesley Publishing Company, 1984, pp. 212–213.