From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
Figurate number representing a decagon
In mathematics , a decagonal number is a figurate number that extends the concept of triangular and square numbers to the decagon (a ten-sided polygon). However, unlike the triangular and square numbers, the patterns involved in the construction of decagonal numbers are not rotationally symmetrical. Specifically, the n -th decagonal numbers counts the dots in a pattern of n nested decagons, all sharing a common corner, where the i th decagon in the pattern has sides made of i dots spaced one unit apart from each other. The n -th decagonal number is given by the following formula
d
n
=
4
n
2
−
3
n
{\displaystyle d_{n}=4n^{2}-3n}
.
The first few decagonal numbers are:
0 , 1 , 10 , 27 , 52 , 85 , 126 , 175 , 232 , 297 , 370, 451, 540, 637, 742, 855, 976, 1105 , 1242, 1387, 1540, 1701, 1870, 2047, 2232, 2425, 2626, 2835, 3052, 3277, 3510, 3751, 4000 , 4257, 4522, 4795, 5076, 5365, 5662, 5967, 6280, 6601, 6930, 7267, 7612, 7965, 8326 (sequence A001107 in the OEIS ).
The n th decagonal number can also be calculated by adding the square of n to thrice the (n −1)th pronic number or, to put it algebraically, as
D
n
=
n
2
+
3
(
n
2
−
n
)
{\displaystyle D_{n}=n^{2}+3\left(n^{2}-n\right)}
.
Properties
Decagonal numbers consistently alternate parity .
D
n
{\displaystyle D_{n}}
is the sum of the first
n
{\displaystyle n}
natural numbers congruent to 1 mod 8.
D
n
{\displaystyle D_{n}}
is number of divisors of
48
n
−
1
{\displaystyle 48^{n-1}}
.
The only decagonal numbers that are square numbers are 0 and 1.
The decagonal numbers follow the following recurrence relations:
D
n
=
D
n
−
1
+
8
n
−
7
,
D
0
=
0
{\displaystyle D_{n}=D_{n-1}+8n-7,D_{0}=0}
D
n
=
2
D
n
−
1
−
D
n
−
2
+
8
,
D
0
=
0
,
D
1
=
1
{\displaystyle D_{n}=2D_{n-1}-D_{n-2}+8,D_{0}=0,D_{1}=1}
D
n
=
3
D
n
−
1
−
3
D
n
−
2
+
D
n
−
3
,
D
0
=
0
,
D
1
=
1
,
D
2
=
10
{\displaystyle D_{n}=3D_{n-1}-3D_{n-2}+D_{n-3},D_{0}=0,D_{1}=1,D_{2}=10}
Sum of reciprocals
The sum of the reciprocals of the decagonal numbers admits a simple closed form:
∑
n
=
1
∞
1
4
n
2
−
3
n
+
∑
n
=
1
∞
1
n
(
4
n
−
3
)
=
ln
(
2
)
+
π
6
.
{\displaystyle \sum _{n=1}^{\infty }{\frac {1}{4n^{2}-3n}}+\sum _{n=1}^{\infty }{\frac {1}{n\left(4n-3\right)}}=\ln \left(2\right)+{\frac {\pi }{6}}.}
Proof
This derivation rests upon the method of adding a "constructive zero":
∑
n
=
1
∞
1
n
(
4
n
−
3
)
=
4
3
∑
n
=
1
∞
(
1
4
n
−
3
−
1
4
n
)
=
2
3
∑
n
=
1
∞
(
2
4
n
−
3
−
2
4
n
+
(
1
4
n
−
1
−
1
4
n
−
2
)
−
(
1
4
n
−
1
−
1
4
n
−
2
)
)
{\displaystyle {\begin{aligned}\sum _{n=1}^{\infty }{\frac {1}{n\left(4n-3\right)}}&{}={\frac {4}{3}}\sum _{n=1}^{\infty }\left({\frac {1}{4n-3}}-{\frac {1}{4n}}\right)\\&={\frac {2}{3}}\sum _{n=1}^{\infty }\left({\frac {2}{4n-3}}-{\frac {2}{4n}}+\left({\frac {1}{4n-1}}-{\frac {1}{4n-2}}\right)-\left({\frac {1}{4n-1}}-{\frac {1}{4n-2}}\right)\right)\end{aligned}}}
Rearranging and considering the individual sums:
=
2
3
∑
n
=
1
∞
[
(
1
4
n
−
3
−
1
4
n
−
2
+
1
4
n
−
1
−
1
4
n
)
+
(
1
4
n
−
2
−
1
4
n
)
+
(
1
4
n
−
3
−
1
4
n
−
1
)
]
=
2
3
∑
n
=
1
∞
(
1
4
n
−
3
−
1
4
n
−
2
+
1
4
n
−
1
−
1
4
n
)
+
1
3
∑
n
=
1
∞
(
1
2
n
−
1
−
1
2
n
)
+
2
3
∑
n
=
1
∞
(
1
2
(
2
n
−
1
)
−
1
−
1
2
(
2
n
)
−
1
)
=
2
3
∑
n
=
1
∞
(
−
1
)
n
+
1
n
+
1
3
∑
n
=
1
∞
(
−
1
)
n
+
1
n
+
2
3
∑
n
=
1
∞
(
−
1
)
n
+
1
2
n
−
1
=
ln
(
2
)
+
π
6
.
{\displaystyle {\begin{aligned}&={\frac {2}{3}}\sum _{n=1}^{\infty }\left[\left({\frac {1}{4n-3}}-{\frac {1}{4n-2}}+{\frac {1}{4n-1}}-{\frac {1}{4n}}\right)+\left({\frac {1}{4n-2}}-{\frac {1}{4n}}\right)+\left({\frac {1}{4n-3}}-{\frac {1}{4n-1}}\right)\right]\\&={\frac {2}{3}}\sum _{n=1}^{\infty }\left({\frac {1}{4n-3}}-{\frac {1}{4n-2}}+{\frac {1}{4n-1}}-{\frac {1}{4n}}\right)+{\frac {1}{3}}\sum _{n=1}^{\infty }\left({\frac {1}{2n-1}}-{\frac {1}{2n}}\right)+{\frac {2}{3}}\sum _{n=1}^{\infty }\left({\frac {1}{2(2n-1)-1}}-{\frac {1}{2(2n)-1}}\right)\\&={\frac {2}{3}}\sum _{n=1}^{\infty }{\frac {(-1)^{n+1}}{n}}+{\frac {1}{3}}\sum _{n=1}^{\infty }{\frac {(-1)^{n+1}}{n}}+{\frac {2}{3}}\sum _{n=1}^{\infty }{\frac {(-1)^{n+1}}{2n-1}}\\&=\ln \left(2\right)+{\frac {\pi }{6}}.\end{aligned}}}
Possessing a specific set of other numbers
Expressible via specific sums