Jump to content

Countably generated module

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

In mathematics, a module over a (not necessarily commutative) ring is countably generated if it is generated as a module by a countable subset. The importance of the notion comes from Kaplansky's theorem (Kaplansky 1958), which states that a projective module is a direct sum of countably generated modules.

More generally, a module over a possibly non-commutative ring is projective if and only if (i) it is flat, (ii) it is a direct sum of countably generated modules and (iii) it is a Mittag-Leffler module. (Bazzoni–Stovicek)

References

  • Kaplansky, Irving (1958). "Projective Modules". Annals of Mathematics. 68 (2): 372–377. doi:10.2307/1970252. hdl:10338.dmlcz/101124. JSTOR 1970252.
  • Bazzoni, Silvana; Šťovíček, Jan (2012). "Flat Mittag-Leffler modules over countable rings". Proceedings of the American Mathematical Society. 140 (5): 1527–1533. arXiv:1007.4977. doi:10.1090/S0002-9939-2011-11070-0.