Jump to content

Cornacchia's algorithm

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

In computational number theory, Cornacchia's algorithm is an algorithm for solving the Diophantine equation , where and d and m are coprime. The algorithm was described in 1908 by Giuseppe Cornacchia.[1]

The algorithm

First, find any solution to (perhaps by using an algorithm listed here); if no such exist, there can be no primitive solution to the original equation. Without loss of generality, we can assume that r0m/2 (if not, then replace r0 with m - r0, which will still be a root of -d). Then use the Euclidean algorithm to find , and so on; stop when . If is an integer, then the solution is ; otherwise try another root of -d until either a solution is found or all roots have been exhausted. In this case there is no primitive solution.

To find non-primitive solutions (x, y) where gcd(x, y) = g ≠ 1, note that the existence of such a solution implies that g2 divides m (and equivalently, that if m is square-free, then all solutions are primitive). Thus the above algorithm can be used to search for a primitive solution (u, v) to u2 + dv2 = m/g2. If such a solution is found, then (gu, gv) will be a solution to the original equation.

Example

Solve the equation . A square root of −6 (mod 103) is 32, and 103 ≡ 7 (mod 32); since and , there is a solution x = 7, y = 3.

References

  1. ^ Cornacchia, G. (1908). "Su di un metodo per la risoluzione in numeri interi dell' equazione ". Giornale di Matematiche di Battaglini. 46: 33–90.