From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
In geometry , the Conway triangle notation , named after English mathematician John Horton Conway ,[ 1] allows trigonometric functions of a triangle to be managed algebraically. However, though the notation was promoted by Conway, a much earlier reference to the notation goes back to the Spanish nineteenth century mathematician gl:Juan Jacobo Durán Loriga .[ 2]
Definition
Given a reference triangle whose sides are a , b and c and whose corresponding internal angles are A , B , and C then the Conway triangle notation is simply represented as follows:
S
=
b
c
sin
A
=
a
c
sin
B
=
a
b
sin
C
,
{\displaystyle S=bc\sin A=ac\sin B=ab\sin C,}
where S = 2 × area of reference triangle and
S
φ
=
S
cot
φ
.
,
{\displaystyle S_{\varphi }=S\cot \varphi .,}
[ 3] [ 4]
In particular:
S
A
=
S
cot
A
=
b
c
cos
A
=
b
2
+
c
2
−
a
2
2
,
{\displaystyle S_{A}=S\cot A=bc\cos A={\frac {b^{2}+c^{2}-a^{2}}{2}},}
S
B
=
S
cot
B
=
a
c
cos
B
=
a
2
+
c
2
−
b
2
2
,
{\displaystyle S_{B}=S\cot B=ac\cos B={\frac {a^{2}+c^{2}-b^{2}}{2}},}
S
C
=
S
cot
C
=
a
b
cos
C
=
a
2
+
b
2
−
c
2
2
,
{\displaystyle S_{C}=S\cot C=ab\cos C={\frac {a^{2}+b^{2}-c^{2}}{2}},}
S
ω
=
S
cot
ω
=
a
2
+
b
2
+
c
2
2
,
{\displaystyle S_{\omega }=S\cot \omega ={\frac {a^{2}+b^{2}+c^{2}}{2}},}
where
ω
,
{\displaystyle \omega ,}
is the Brocard angle . The law of cosines is used:
a
2
=
b
2
+
c
2
−
2
b
c
cos
A
{\displaystyle a^{2}=b^{2}+c^{2}-2bc\cos A}
.
S
π
3
=
S
cot
π
3
=
S
3
3
,
{\displaystyle S_{\frac {\pi }{3}}=S\cot {\frac {\pi }{3}}=S{\frac {\sqrt {3}}{3}},}
S
2
φ
=
S
φ
2
−
S
2
2
S
φ
S
φ
2
=
S
φ
+
S
φ
2
+
S
2
,
{\displaystyle S_{2\varphi }={\frac {S_{\varphi }^{2}-S^{2}}{2S_{\varphi }}}\quad \quad S_{\frac {\varphi }{2}}=S_{\varphi }+{\sqrt {S_{\varphi }^{2}+S^{2}}},}
for values of
φ
{\displaystyle \varphi }
where
0
<
φ
<
π
,
{\displaystyle 0<\varphi <\pi ,}
S
ϑ
+
φ
=
S
ϑ
S
φ
−
S
2
S
ϑ
+
S
φ
S
ϑ
−
φ
=
S
ϑ
S
φ
+
S
2
S
φ
−
S
ϑ
,
.
{\displaystyle S_{\vartheta +\varphi }={\frac {S_{\vartheta }S_{\varphi }-S^{2}}{S_{\vartheta }+S_{\varphi }}}\quad \quad S_{\vartheta -\varphi }={\frac {S_{\vartheta }S_{\varphi }+S^{2}}{S_{\varphi }-S_{\vartheta }}},.}
Furthermore the convention uses a shorthand notation for
S
ϑ
S
φ
=
S
ϑ
φ
,
{\displaystyle S_{\vartheta }S_{\varphi }=S_{\vartheta \varphi },}
and
S
ϑ
S
φ
S
ψ
=
S
ϑ
φ
ψ
,
.
{\displaystyle S_{\vartheta }S_{\varphi }S_{\psi }=S_{\vartheta \varphi \psi },.}
Trigonometric relationships
sin
A
=
S
b
c
=
S
S
A
2
+
S
2
cos
A
=
S
A
b
c
=
S
A
S
A
2
+
S
2
tan
A
=
S
S
A
,
{\displaystyle \sin A={\frac {S}{bc}}={\frac {S}{\sqrt {S_{A}^{2}+S^{2}}}}\quad \quad \cos A={\frac {S_{A}}{bc}}={\frac {S_{A}}{\sqrt {S_{A}^{2}+S^{2}}}}\quad \quad \tan A={\frac {S}{S_{A}}},}
a
2
=
S
B
+
S
C
b
2
=
S
A
+
S
C
c
2
=
S
A
+
S
B
.
{\displaystyle a^{2}=S_{B}+S_{C}\quad \quad b^{2}=S_{A}+S_{C}\quad \quad c^{2}=S_{A}+S_{B}.}
Important identities
∑
cyclic
S
A
=
S
A
+
S
B
+
S
C
=
S
ω
,
{\displaystyle \sum _{\text{cyclic}}S_{A}=S_{A}+S_{B}+S_{C}=S_{\omega },}
S
2
=
b
2
c
2
−
S
A
2
=
a
2
c
2
−
S
B
2
=
a
2
b
2
−
S
C
2
,
{\displaystyle S^{2}=b^{2}c^{2}-S_{A}^{2}=a^{2}c^{2}-S_{B}^{2}=a^{2}b^{2}-S_{C}^{2},}
S
B
C
=
S
B
S
C
=
S
2
−
a
2
S
A
S
A
C
=
S
A
S
C
=
S
2
−
b
2
S
B
S
A
B
=
S
A
S
B
=
S
2
−
c
2
S
C
,
{\displaystyle S_{BC}=S_{B}S_{C}=S^{2}-a^{2}S_{A}\quad \quad S_{AC}=S_{A}S_{C}=S^{2}-b^{2}S_{B}\quad \quad S_{AB}=S_{A}S_{B}=S^{2}-c^{2}S_{C},}
S
A
B
C
=
S
A
S
B
S
C
=
S
2
(
S
ω
−
4
R
2
)
S
ω
=
s
2
−
r
2
−
4
r
R
,
{\displaystyle S_{ABC}=S_{A}S_{B}S_{C}=S^{2}(S_{\omega }-4R^{2})\quad \quad S_{\omega }=s^{2}-r^{2}-4rR,}
where R is the circumradius and abc = 2SR and where r is the incenter ,
s
=
a
+
b
+
c
2
,
{\displaystyle s={\frac {a+b+c}{2}},}
and
a
+
b
+
c
=
S
r
.
{\displaystyle a+b+c={\frac {S}{r}}.}
Trigonometric conversions
sin
A
sin
B
sin
C
=
S
4
R
2
cos
A
cos
B
cos
C
=
S
ω
−
4
R
2
4
R
2
{\displaystyle \sin A\sin B\sin C={\frac {S}{4R^{2}}}\quad \quad \cos A\cos B\cos C={\frac {S_{\omega }-4R^{2}}{4R^{2}}}}
∑
cyclic
sin
A
=
S
2
R
r
=
s
R
∑
cyclic
cos
A
=
r
+
R
R
∑
cyclic
tan
A
=
S
S
ω
−
4
R
2
=
tan
A
tan
B
tan
C
.
{\displaystyle \sum _{\text{cyclic}}\sin A={\frac {S}{2Rr}}={\frac {s}{R}}\quad \quad \sum _{\text{cyclic}}\cos A={\frac {r+R}{R}}\quad \quad \sum _{\text{cyclic}}\tan A={\frac {S}{S_{\omega }-4R^{2}}}=\tan A\tan B\tan C.}
∑
cyclic
a
2
S
A
=
a
2
S
A
+
b
2
S
B
+
c
2
S
C
=
2
S
2
∑
cyclic
a
4
=
2
(
S
ω
2
−
S
2
)
,
{\displaystyle \sum _{\text{cyclic}}a^{2}S_{A}=a^{2}S_{A}+b^{2}S_{B}+c^{2}S_{C}=2S^{2}\quad \quad \sum _{\text{cyclic}}a^{4}=2(S_{\omega }^{2}-S^{2}),}
∑
cyclic
S
A
2
=
S
ω
2
−
2
S
2
∑
cyclic
S
B
C
=
∑
cyclic
S
B
S
C
=
S
2
∑
cyclic
b
2
c
2
=
S
ω
2
+
S
2
.
{\displaystyle \sum _{\text{cyclic}}S_{A}^{2}=S_{\omega }^{2}-2S^{2}\quad \quad \sum _{\text{cyclic}}S_{BC}=\sum _{\text{cyclic}}S_{B}S_{C}=S^{2}\quad \quad \sum _{\text{cyclic}}b^{2}c^{2}=S_{\omega }^{2}+S^{2}.}
Applications
Let D be the distance between two points P and Q whose trilinear coordinates are p a : p b : p c and q a : q b : q c . Let K p = ap a + bp b + cp c and let K q = aq a + bq b + cq c . Then D is given by the formula:
D
2
=
∑
cyclic
a
2
S
A
(
p
a
K
p
−
q
a
K
q
)
2
,
.
{\displaystyle D^{2}=\sum _{\text{cyclic}}a^{2}S_{A}\left({\frac {p_{a}}{K_{p}}}-{\frac {q_{a}}{K_{q}}}\right)^{2},.}
[ 5]
Distance between circumcenter and orthocenter
Using this formula it is possible to determine OH, the distance between the circumcenter and the orthocenter as follows:
For the circumcenter p a = aS A and for the orthocenter q a = S B S C /a
K
p
=
∑
cyclic
a
2
S
A
=
2
S
2
K
q
=
∑
cyclic
S
B
S
C
=
S
2
,
.
{\displaystyle K_{p}=\sum _{\text{cyclic}}a^{2}S_{A}=2S^{2}\quad \quad K_{q}=\sum _{\text{cyclic}}S_{B}S_{C}=S^{2},.}
Hence:
D
2
=
∑
cyclic
a
2
S
A
(
a
S
A
2
S
2
−
S
B
S
C
a
S
2
)
2
=
1
4
S
4
∑
cyclic
a
4
S
A
3
−
S
A
S
B
S
C
S
4
∑
cyclic
a
2
S
A
+
S
A
S
B
S
C
S
4
∑
cyclic
S
B
S
C
=
1
4
S
4
∑
cyclic
a
2
S
A
2
(
S
2
−
S
B
S
C
)
−
2
(
S
ω
−
4
R
2
)
+
(
S
ω
−
4
R
2
)
=
1
4
S
2
∑
cyclic
a
2
S
A
2
−
S
A
S
B
S
C
S
4
∑
cyclic
a
2
S
A
−
(
S
ω
−
4
R
2
)
=
1
4
S
2
∑
cyclic
a
2
(
b
2
c
2
−
S
2
)
−
1
2
(
S
ω
−
4
R
2
)
−
(
S
ω
−
4
R
2
)
=
3
a
2
b
2
c
2
4
S
2
−
1
4
∑
cyclic
a
2
−
3
2
(
S
ω
−
4
R
2
)
=
3
R
2
−
1
2
S
ω
−
3
2
S
ω
+
6
R
2
=
9
R
2
−
2
S
ω
.
{\displaystyle {\begin{aligned}D^{2}&{}=\sum _{\text{cyclic}}a^{2}S_{A}\left({\frac {aS_{A}}{2S^{2}}}-{\frac {S_{B}S_{C}}{aS^{2}}}\right)^{2}\\&{}={\frac {1}{4S^{4}}}\sum _{\text{cyclic}}a^{4}S_{A}^{3}-{\frac {S_{A}S_{B}S_{C}}{S^{4}}}\sum _{\text{cyclic}}a^{2}S_{A}+{\frac {S_{A}S_{B}S_{C}}{S^{4}}}\sum _{\text{cyclic}}S_{B}S_{C}\\&{}={\frac {1}{4S^{4}}}\sum _{\text{cyclic}}a^{2}S_{A}^{2}(S^{2}-S_{B}S_{C})-2(S_{\omega }-4R^{2})+(S_{\omega }-4R^{2})\\&{}={\frac {1}{4S^{2}}}\sum _{\text{cyclic}}a^{2}S_{A}^{2}-{\frac {S_{A}S_{B}S_{C}}{S^{4}}}\sum _{\text{cyclic}}a^{2}S_{A}-(S_{\omega }-4R^{2})\\&{}={\frac {1}{4S^{2}}}\sum _{\text{cyclic}}a^{2}(b^{2}c^{2}-S^{2})-{\frac {1}{2}}(S_{\omega }-4R^{2})-(S_{\omega }-4R^{2})\\&{}={\frac {3a^{2}b^{2}c^{2}}{4S^{2}}}-{\frac {1}{4}}\sum _{\text{cyclic}}a^{2}-{\frac {3}{2}}(S_{\omega }-4R^{2})\\&{}=3R^{2}-{\frac {1}{2}}S_{\omega }-{\frac {3}{2}}S_{\omega }+6R^{2}\\&{}=9R^{2}-2S_{\omega }.\end{aligned}}}
Thus,
O
H
=
9
R
2
−
2
S
ω
,
.
{\displaystyle OH={\sqrt {9R^{2}-2S_{\omega },}}.}
[ 6]
See also
References
^ Chen, Evan (2016). Euclidean Geometry in Mathematical Olympiads . Mathematical Association of America . p. 132. ISBN 978-0883858394 .
^ Loriga, Juan Jacobo Durán, "Nota sobre el triángulo", en El Progreso Matemático, tomo IV (1894), pages 313-316. , Periodico de Matematicas Puras y Aplicadas .
^ Yiu, Paul (2002), "Notation." §3.4.1 in Introduction to the Geometry of the Triangle. pp. 33-34, Version 2.0402, April 2002 (PDF) , Department of Mathematics Florida Atlantic University, pp. 33– 34 .
^ Kimberling, Clark, Encyclopedia of Triangle Centers - ETC, Part 1 "Introduced on November 1, 2011: Combos" Note 6 , University of Evansville .
^ Yiu, Paul (2002), "The distance formula" §7.1 in Introduction to the Geometry of the Triangle. p. 87, Version 2.0402, April 2002 (PDF) , Department of Mathematics Florida Atlantic University, p. 87 .
^ Weisstein, Eric W. "Orthocenter §(14)" . MathWorld .