Jump to content

Continuum structure function

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

In mathematics, a continuum structure function (CSF) is defined by Laurence Baxter as a nondecreasing mapping from the unit hypercube to the unit interval. It is used by Baxter to help in the Mathematical modelling of the level of performance of a system in terms of the performance levels of its components.[1][2][3]

References

  1. ^ Baxter, Laurence A. (1984). "Continuum structures I". Journal of Applied Probability. 21 (4): 802–815. doi:10.2307/3213697. JSTOR 3213697.
  2. ^ Baxter, Laurence A. (1986). "Continuum structures. II". Mathematical Proceedings of the Cambridge Philosophical Society. 99 (2): 331–338. Bibcode:1986MPCPS..99..331B. doi:10.1017/S0305004100064240.
  3. ^ Kim, Chul; Baxter, Laurence A. (1987). "Reliability importance for continuum structure functions". Journal of Applied Probability. 24 (3): 779–785. doi:10.2307/3214108. JSTOR 3214108.

Further reading