Jump to content

Constant phase element

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

In electronics, a constant phase element is an equivalent electrical circuit component that models the behaviour of a double layer, that is, an imperfect capacitor (see double-layer capacitance).

Constant phase elements are also used in equivalent circuit modeling and data fitting of electrochemical impedance spectroscopy data.

A constant phase element also currently appears in modeling the imperfect dielectrics' behavior. The generalization in the fields of imperfect electrical resistances, capacitances, and inductances leads to the general "phasance" concept: http://fr.scribd.com/doc/71923015/The-Phasance-Concept

General equation

The electrical impedance can be calculated:

where the CPE admittance is: and Q0 and n (0<n<1) are frequency independent.[1]

Q0 = 1/|Z| at ω = 1 rad/s

The constant phase is always −(90*n)°, with n from 0 to 1. The case n = 1 describes an ideal capacitor while the case n = 0 describes a pure resistor.

References

  1. ^ Kochowski, S; K. Nitsch (21 May 2002). "Description of the frequency behaviour of metal-SiO2-GaAs structure characteristics by electrical equivalent circuit with constant phase element" (PDF). Thin Solid Films. 415 (1–2): 133–137. Bibcode:2002TSF...415..133K. doi:10.1016/s0040-6090(02)00506-0. Retrieved 22 October 2012.[permanent dead link]