Jump to content

Concurrent MetateM

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Concurrent MetateM is a multi-agent language in which each agent is programmed using a set of (augmented) temporal logic specifications of the behaviour it should exhibit. These specifications are executed directly to generate the behaviour of the agent. As a result, there is no risk of invalidating the logic as with systems where logical specification must first be translated to a lower-level implementation.

The root of the MetateM concept is Gabbay's separation theorem; any arbitrary temporal logic formula can be rewritten in a logically equivalent past → future form. Execution proceeds by a process of continually matching rules against a history, and firing those rules when antecedents are satisfied. Any instantiated future-time consequents become commitments which must subsequently be satisfied, iteratively generating a model for the formula made up of the program rules.

Temporal Connectives

The Temporal Connectives of Concurrent MetateM can divided into two categories, as follows:[1]

  • Strict past time connectives: '●' (weak last), '◎' (strong last), '◆' (was), '■' (heretofore), 'S' (since), and 'Z' (zince, or weak since).
  • Present and future time connectives: '◯' (next), '◇' (sometime), '□' (always), 'U' (until), and 'W' (unless).

The connectives {◎,●,◆,■,◯,◇,□} are unary; the remainder are binary.

Strict past time connectives

Weak last

●ρ is satisfied now if ρ was true in the previous time. If ●ρ is interpreted at the beginning of time, it is satisfied despite there being no actual previous time. Hence "weak" last.

Strong last

◎ρ is satisfied now if ρ was true in the previous time. If ◎ρ is interpreted at the beginning of time, it is not satisfied because there is no actual previous time. Hence "strong" last.

Was

◆ρ is satisfied now if ρ was true in any previous moment in time.

Heretofore

■ρ is satisfied now if ρ was true in every previous moment in time.

Since

ρSψ is satisfied now if ψ is true at any previous moment and ρ is true at every moment after that moment.

Zince, or weak since

ρZψ is satisfied now if (ψ is true at any previous moment and ρ is true at every moment after that moment) OR ψ has not happened in the past.

Present and future time connectives

Next

◯ρ is satisfied now if ρ is true in the next moment in time.

Sometime

◇ρ is satisfied now if ρ is true now or in any future moment in time.

Always

ρ is satisfied now if ρ is true now and in every future moment in time.

Until

ρUψ is satisfied now if ψ is true at any future moment and ρ is true at every moment prior.

Unless

ρWψ is satisfied now if (ψ is true at any future moment and ρ is true at every moment prior) OR ψ does not happen in the future.

References

  1. ^ "core.ac.uk" (PDF).
  • A Java implementation of a MetateM interpreter can be downloaded from here