Jump to content

Compound Poisson process

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

A compound Poisson process is a continuous-time stochastic process with jumps. The jumps arrive randomly according to a Poisson process and the size of the jumps is also random, with a specified probability distribution. To be precise, a compound Poisson process, parameterised by a rate and jump size distribution G, is a process given by

where, is the counting variable of a Poisson process with rate , and are independent and identically distributed random variables, with distribution function G, which are also independent of

When are non-negative integer-valued random variables, then this compound Poisson process is known as a stuttering Poisson process. [citation needed]

Properties of the compound Poisson process

The expected value of a compound Poisson process can be calculated using a result known as Wald's equation as:

Making similar use of the law of total variance, the variance can be calculated as:

Lastly, using the law of total probability, the moment generating function can be given as follows:

Exponentiation of measures

Let N, Y, and D be as above. Let μ be the probability measure according to which D is distributed, i.e.

Let δ0 be the trivial probability distribution putting all of the mass at zero. Then the probability distribution of Y(t) is the measure

where the exponential exp(ν) of a finite measure ν on Borel subsets of the real line is defined by

and

is a convolution of measures, and the series converges weakly.

See also