Jump to content

Complex Lie algebra

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

In mathematics, a complex Lie algebra is a Lie algebra over the complex numbers.

Given a complex Lie algebra , its conjugate is a complex Lie algebra with the same underlying real vector space but with acting as instead.[1] As a real Lie algebra, a complex Lie algebra is trivially isomorphic to its conjugate. A complex Lie algebra is isomorphic to its conjugate if and only if it admits a real form (and is said to be defined over the real numbers).

Real form

Given a complex Lie algebra , a real Lie algebra is said to be a real form of if the complexification is isomorphic to .

A real form is abelian (resp. nilpotent, solvable, semisimple) if and only if is abelian (resp. nilpotent, solvable, semisimple).[2] On the other hand, a real form is simple if and only if either is simple or is of the form where are simple and are the conjugates of each other.[2]

The existence of a real form in a complex Lie algebra implies that is isomorphic to its conjugate;[1] indeed, if , then let denote the -linear isomorphism induced by complex conjugate and then

,

which is to say is in fact a -linear isomorphism.

Conversely,[clarification needed] suppose there is a -linear isomorphism ; without loss of generality, we can assume it is the identity function on the underlying real vector space. Then define , which is clearly a real Lie algebra. Each element in can be written uniquely as . Here, and similarly fixes . Hence, ; i.e., is a real form.

Complex Lie algebra of a complex Lie group

Let be a semisimple complex Lie algebra that is the Lie algebra of a complex Lie group . Let be a Cartan subalgebra of and the Lie subgroup corresponding to ; the conjugates of are called Cartan subgroups.

Suppose there is the decomposition given by a choice of positive roots. Then the exponential map defines an isomorphism from to a closed subgroup .[3] The Lie subgroup corresponding to the Borel subalgebra is closed and is the semidirect product of and ;[4] the conjugates of are called Borel subgroups.

Notes

  1. ^ a b Knapp 2002, Ch. VI, § 9.
  2. ^ a b Serre 2001, Ch. II, § 8, Theorem 9.
  3. ^ Serre 2001, Ch. VIII, § 4, Theorem 6 (a).
  4. ^ Serre 2001, Ch. VIII, § 4, Theorem 6 (b).

References

  • Fulton, William; Harris, Joe (1991). Representation theory. A first course. Graduate Texts in Mathematics, Readings in Mathematics. Vol. 129. New York: Springer-Verlag. doi:10.1007/978-1-4612-0979-9. ISBN 978-0-387-97495-8. MR 1153249. OCLC 246650103.
  • Knapp, A. W. (2002). Lie groups beyond an introduction. Progress in Mathematics. Vol. 120 (2nd ed.). Boston·Basel·Berlin: Birkhäuser. ISBN 0-8176-4259-5..
  • Serre, Jean-Pierre (2001). Complex Semisimple Lie Algebras. Berlin: Springer. ISBN 3-5406-7827-1.