Jump to content

Commutant lifting theorem

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

In operator theory, the commutant lifting theorem, due to Sz.-Nagy and Foias, is a powerful theorem used to prove several interpolation results.

Statement

The commutant lifting theorem states that if is a contraction on a Hilbert space , is its minimal unitary dilation acting on some Hilbert space (which can be shown to exist by Sz.-Nagy's dilation theorem), and is an operator on commuting with , then there is an operator on commuting with such that

and

Here, is the projection from onto . In other words, an operator from the commutant of T can be "lifted" to an operator in the commutant of the unitary dilation of T.

Applications

The commutant lifting theorem can be used to prove the left Nevanlinna-Pick interpolation theorem, the Sarason interpolation theorem, and the two-sided Nudelman theorem, among others.

References

  • Vern Paulsen, Completely Bounded Maps and Operator Algebras 2002, ISBN 0-521-81669-6
  • B Sz.-Nagy and C. Foias, "The "Lifting theorem" for intertwining operators and some new applications", Indiana Univ. Math. J 20 (1971): 901-904
  • Foiaş, Ciprian, ed. Metric Constrained Interpolation, Commutant Lifting, and Systems. Vol. 100. Springer, 1998.